HuanjinYao's picture
Update app.py
86cffc0 verified
raw
history blame
4.5 kB
import gradio as gr
from huggingface_hub import InferenceClient
import spaces
import os
import warnings
import shutil
import time
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, AutoProcessor
from transformers import TextIteratorStreamer
import torch
from dc.model import *
from dc.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from dc.conversation import conv_templates, SeparatorStyle
from PIL import Image
processor = AutoProcessor.from_pretrained('HuanjinYao/DenseConnector-v1.5-8B')
tokenizer = AutoTokenizer.from_pretrained('HuanjinYao/DenseConnector-v1.5-8B', use_fast=False)
model = LlavaLlamaForCausalLM.from_pretrained('HuanjinYao/DenseConnector-v1.5-8B', low_cpu_mem_usage=True, **kwargs)
image_processor = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
vision_tower.to(device=device, dtype=torch.float16)
image_processor = vision_tower.image_processor
model.to('cuda')
# model.generation_config.eos_token_id = 128009
tokenizer.unk_token = "<|reserved_special_token_0|>"
tokenizer.pad_token = tokenizer.unk_token
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU
def bot_streaming(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
conv = conv_templates['llama_3'].copy()
if len(history) == 0:
user = DEFAULT_IMAGE_TOKEN + '\n' + message['text']
else:
for idx, (user, assistant) in enumerate(history):
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
if idx == 0:
user = DEFAULT_IMAGE_TOKEN + '\n' + user
conv.append_message(conv.roles[0], user)
conv.append_message(conv.roles[1], assistant)
conv.append_message(conv.roles[0], user)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
image = Image.open(os.path.join(image, image_file)).convert('RGB')
image_tensor = image_processor([image], image_processor, self.model_config)[0]
inputs = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, eos_token_id = terminators)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
# time.sleep(0.5)
for new_text in streamer:
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
generated_text_without_prompt = buffer
# time.sleep(0.06)
yield generated_text_without_prompt
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="LLaVA Llama-3-8B",
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
{"text": "How to make this pastry?", "files": ["./baklava.png"]}],
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)
if __name__ == "__main__":
demo.launch()