Update app.py
Browse files
app.py
CHANGED
@@ -22,16 +22,24 @@ def gradio_demo(model_name, sequence_input, image):
|
|
22 |
dataset = "HPA"
|
23 |
|
24 |
|
25 |
-
nucleus_image = image['image']
|
26 |
-
protein_image = image['mask']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
protein_image = process_image(protein_image, dataset, "nucleus")
|
30 |
-
protein_image = 1.0*(protein_image > .5)
|
31 |
-
print(f'{nucleus_image=}')
|
32 |
-
print(f'{protein_image.shape=}')
|
33 |
|
34 |
-
|
|
|
35 |
sequence_input=sequence_input,
|
36 |
nucleus_image=nucleus_image,
|
37 |
protein_image=protein_image,
|
@@ -40,35 +48,16 @@ def gradio_demo(model_name, sequence_input, image):
|
|
40 |
device=device,
|
41 |
)
|
42 |
|
43 |
-
|
44 |
-
protein_image = protein_image * 1.0
|
45 |
-
|
46 |
-
|
47 |
-
# Plot the heatmap
|
48 |
-
plt.imshow(heatmap.cpu(), cmap="rainbow", interpolation="bicubic")
|
49 |
-
plt.axis("off")
|
50 |
-
|
51 |
-
# Save the plot to a temporary file
|
52 |
-
plt.savefig("temp.png", bbox_inches="tight", dpi=256)
|
53 |
-
|
54 |
-
# Open the temporary file as a PIL image
|
55 |
-
heatmap = Image.open("temp.png")
|
56 |
-
|
57 |
-
return (
|
58 |
-
T.ToPILImage()(nucleus_image[0, 0]),
|
59 |
-
T.ToPILImage()(protein_image),
|
60 |
-
T.ToPILImage()(threshold),
|
61 |
-
heatmap,
|
62 |
-
)
|
63 |
|
64 |
|
65 |
with gr.Blocks() as demo:
|
66 |
gr.Markdown("Select the prediction model.")
|
67 |
gr.Markdown(
|
68 |
-
"CELL-E_2_HPA_2560 is a good general purpose model for various cell types using ICC-IF."
|
69 |
)
|
70 |
gr.Markdown(
|
71 |
-
"CELL-E_2_OpenCell_2560 is trained on OpenCell and is good more live-cell predictions on HEK cells."
|
72 |
)
|
73 |
with gr.Row():
|
74 |
model_name = gr.Dropdown(
|
@@ -88,14 +77,14 @@ with gr.Blocks() as demo:
|
|
88 |
)
|
89 |
with gr.Row():
|
90 |
gr.Markdown(
|
91 |
-
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images)"
|
92 |
)
|
93 |
-
gr.Markdown("The protein image is optional and is just used for display.")
|
94 |
|
95 |
with gr.Row().style(equal_height=True):
|
96 |
nucleus_image = gr.Image(
|
97 |
source="upload",
|
98 |
tool="sketch",
|
|
|
99 |
label="Nucleus Image",
|
100 |
line_color="white",
|
101 |
interactive=True,
|
@@ -104,12 +93,11 @@ with gr.Blocks() as demo:
|
|
104 |
)
|
105 |
|
106 |
with gr.Row():
|
107 |
-
gr.Markdown("
|
108 |
|
109 |
with gr.Row().style(equal_height=True):
|
110 |
-
predicted_sequence = gr.Textbox(
|
111 |
-
|
112 |
-
)
|
113 |
|
114 |
with gr.Row():
|
115 |
button = gr.Button("Run Model")
|
@@ -120,4 +108,4 @@ with gr.Blocks() as demo:
|
|
120 |
|
121 |
button.click(gradio_demo, inputs, outputs)
|
122 |
|
123 |
-
demo.launch(
|
|
|
22 |
dataset = "HPA"
|
23 |
|
24 |
|
25 |
+
nucleus_image = image['image'].convert('L')
|
26 |
+
protein_image = image['mask'].convert('L')
|
27 |
+
|
28 |
+
to_tensor = T.ToTensor()
|
29 |
+
nucleus_tensor = to_tensor(nucleus_image)
|
30 |
+
protein_tensor = to_tensor(protein_image)
|
31 |
+
stacked_images = torch.stack([nucleus_tensor, protein_tensor], dim=0)
|
32 |
+
processed_images = process_image(stacked_images, dataset)
|
33 |
+
|
34 |
+
nucleus_image = processed_images[0].unsqueeze(0)
|
35 |
+
protein_image = processed_images[1].unsqueeze(0)
|
36 |
+
protein_image = protein_image > 0
|
37 |
+
protein_image = 1.0 * protein_image
|
38 |
|
39 |
+
print(f'{protein_image.sum()}')
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
|
42 |
+
formatted_predicted_sequence = run_sequence_prediction(
|
43 |
sequence_input=sequence_input,
|
44 |
nucleus_image=nucleus_image,
|
45 |
protein_image=protein_image,
|
|
|
48 |
device=device,
|
49 |
)
|
50 |
|
51 |
+
return formatted_predicted_sequence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
with gr.Blocks() as demo:
|
55 |
gr.Markdown("Select the prediction model.")
|
56 |
gr.Markdown(
|
57 |
+
"- CELL-E_2_HPA_2560 is a good general purpose model for various cell types using ICC-IF."
|
58 |
)
|
59 |
gr.Markdown(
|
60 |
+
"- CELL-E_2_OpenCell_2560 is trained on OpenCell and is good more live-cell predictions on HEK cells."
|
61 |
)
|
62 |
with gr.Row():
|
63 |
model_name = gr.Dropdown(
|
|
|
77 |
)
|
78 |
with gr.Row():
|
79 |
gr.Markdown(
|
80 |
+
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images). Draw the desired localization on top of the nucelus image."
|
81 |
)
|
|
|
82 |
|
83 |
with gr.Row().style(equal_height=True):
|
84 |
nucleus_image = gr.Image(
|
85 |
source="upload",
|
86 |
tool="sketch",
|
87 |
+
invert_colors=True,
|
88 |
label="Nucleus Image",
|
89 |
line_color="white",
|
90 |
interactive=True,
|
|
|
93 |
)
|
94 |
|
95 |
with gr.Row():
|
96 |
+
gr.Markdown("Sequence predictions are show below.")
|
97 |
|
98 |
with gr.Row().style(equal_height=True):
|
99 |
+
predicted_sequence = gr.Textbox(label='Predicted Sequence')
|
100 |
+
|
|
|
101 |
|
102 |
with gr.Row():
|
103 |
button = gr.Button("Run Model")
|
|
|
108 |
|
109 |
button.click(gradio_demo, inputs, outputs)
|
110 |
|
111 |
+
demo.launch(enable_queue=True)
|