EmaadKhwaja
commited on
Commit
•
fbe05c1
1
Parent(s):
243afec
enable queue
Browse files- app.py +1 -1
- prediction.py +0 -130
app.py
CHANGED
@@ -124,4 +124,4 @@ with gr.Blocks() as demo:
|
|
124 |
|
125 |
button.click(gradio_demo, inputs, outputs)
|
126 |
|
127 |
-
demo.launch()
|
|
|
124 |
|
125 |
button.click(gradio_demo, inputs, outputs)
|
126 |
|
127 |
+
demo.launch(enable_queue=True)
|
prediction.py
CHANGED
@@ -1,138 +1,8 @@
|
|
1 |
-
import argparse
|
2 |
-
import torch
|
3 |
import os
|
4 |
os.chdir('..')
|
5 |
from dataloader import CellLoader
|
6 |
-
from matplotlib import pyplot as plt
|
7 |
from celle_main import instantiate_from_config
|
8 |
from omegaconf import OmegaConf
|
9 |
-
from celle.utils import process_image
|
10 |
-
|
11 |
-
def run_model(mode, sequence,
|
12 |
-
nucleus_image_path,
|
13 |
-
protein_image_path,
|
14 |
-
model_ckpt_path,
|
15 |
-
model_config_path,
|
16 |
-
device):
|
17 |
-
if mode == "image":
|
18 |
-
run_image_prediction(
|
19 |
-
sequence,
|
20 |
-
nucleus_image_path,
|
21 |
-
protein_image_path,
|
22 |
-
model_ckpt_path,
|
23 |
-
model_config_path,
|
24 |
-
device
|
25 |
-
)
|
26 |
-
elif mode == "sequence":
|
27 |
-
run_sequence_prediction(
|
28 |
-
sequence,
|
29 |
-
nucleus_image_path,
|
30 |
-
protein_image_path,
|
31 |
-
model_ckpt_path,
|
32 |
-
model_config_path,
|
33 |
-
device
|
34 |
-
)
|
35 |
-
|
36 |
-
def run_sequence_prediction(
|
37 |
-
sequence_input,
|
38 |
-
nucleus_image_path,
|
39 |
-
protein_image_path,
|
40 |
-
model_ckpt_path,
|
41 |
-
model_config_path,
|
42 |
-
device
|
43 |
-
):
|
44 |
-
"""
|
45 |
-
Run Celle model with provided inputs and display results.
|
46 |
-
|
47 |
-
:param sequence: Path to sequence file
|
48 |
-
:param nucleus_image_path: Path to nucleus image
|
49 |
-
:param protein_image_path: Path to protein image (optional)
|
50 |
-
:param model_ckpt_path: Path to model checkpoint
|
51 |
-
:param model_config_path: Path to model config
|
52 |
-
"""
|
53 |
-
|
54 |
-
# Instantiate dataset object
|
55 |
-
dataset = CellLoader(
|
56 |
-
sequence_mode="embedding",
|
57 |
-
vocab="esm2",
|
58 |
-
split_key="val",
|
59 |
-
crop_method="center",
|
60 |
-
resize=600,
|
61 |
-
crop_size=256,
|
62 |
-
text_seq_len=1000,
|
63 |
-
pad_mode="end",
|
64 |
-
threshold="median",
|
65 |
-
)
|
66 |
-
|
67 |
-
# Check if sequence is provided and valid
|
68 |
-
if len(sequence_input) == 0:
|
69 |
-
raise ValueError("Sequence must be provided.")
|
70 |
-
|
71 |
-
if "<mask>" not in sequence_input:
|
72 |
-
print("Warning: Sequence does not contain any masked positions to predict.")
|
73 |
-
|
74 |
-
# Convert SEQUENCE to sequence using dataset.tokenize_sequence()
|
75 |
-
sequence = dataset.tokenize_sequence(sequence_input)
|
76 |
-
|
77 |
-
# Check if nucleus image path is provided and valid
|
78 |
-
if not os.path.exists(nucleus_image_path):
|
79 |
-
# Use default nucleus image from dataset and print warning
|
80 |
-
nucleus_image_path = 'images/nucleus.jpg'
|
81 |
-
print(
|
82 |
-
"Warning: No nucleus image provided. Using default nucleus image from dataset."
|
83 |
-
)
|
84 |
-
else:
|
85 |
-
# Load nucleus image from provided path
|
86 |
-
nucleus_image = process_image(nucleus_image_path)
|
87 |
-
|
88 |
-
# Check if protein image path is provided and valid
|
89 |
-
if not os.path.exists(protein_image_path):
|
90 |
-
# Use default nucleus image from dataset and print warning
|
91 |
-
protein_image_path = 'images/protein.jpg'
|
92 |
-
print(
|
93 |
-
"Warning: No nucleus image provided. Using default protein image from dataset."
|
94 |
-
)
|
95 |
-
else:
|
96 |
-
# Load protein image from provided path
|
97 |
-
protein_image = process_image(protein_image_path)
|
98 |
-
protein_image = (protein_image > torch.median(protein_image,dim=0))*1.0
|
99 |
-
|
100 |
-
# Load model config and set ckpt_path if not provided in config
|
101 |
-
config = OmegaConf.load(model_config_path)
|
102 |
-
if config["model"]["params"]["ckpt_path"] is None:
|
103 |
-
config["model"]["params"]["ckpt_path"] = model_ckpt_path
|
104 |
-
|
105 |
-
# Set condition_model_path and vqgan_model_path to None
|
106 |
-
config["model"]["params"]["condition_model_path"] = None
|
107 |
-
config["model"]["params"]["vqgan_model_path"] = None
|
108 |
-
|
109 |
-
# Instantiate model from config and move to device
|
110 |
-
model = instantiate_from_config(config).to(device)
|
111 |
-
|
112 |
-
# Sample from model using provided sequence and nucleus image
|
113 |
-
_, predicted_sequence, _ = model.celle.sample_text(
|
114 |
-
text=sequence,
|
115 |
-
condition=nucleus_image,
|
116 |
-
image=protein_image,
|
117 |
-
force_aas=True,
|
118 |
-
timesteps=1,
|
119 |
-
temperature=1,
|
120 |
-
progress=True,
|
121 |
-
)
|
122 |
-
|
123 |
-
formatted_predicted_sequence = ""
|
124 |
-
|
125 |
-
for i in range(min(len(predicted_sequence), len(sequence))):
|
126 |
-
if predicted_sequence[i] != sequence[i]:
|
127 |
-
formatted_predicted_sequence += f"**{predicted_sequence[i]}**"
|
128 |
-
else:
|
129 |
-
formatted_predicted_sequence += predicted_sequence[i]
|
130 |
-
|
131 |
-
if len(predicted_sequence) > len(sequence):
|
132 |
-
formatted_predicted_sequence += f"**{predicted_sequence[len(sequence):]}**"
|
133 |
-
|
134 |
-
print("predicted_sequence:", formatted_predicted_sequence)
|
135 |
-
|
136 |
|
137 |
def run_image_prediction(
|
138 |
sequence_input,
|
|
|
|
|
|
|
1 |
import os
|
2 |
os.chdir('..')
|
3 |
from dataloader import CellLoader
|
|
|
4 |
from celle_main import instantiate_from_config
|
5 |
from omegaconf import OmegaConf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def run_image_prediction(
|
8 |
sequence_input,
|