EmaadKhwaja
file upload
5d2263b
raw
history blame
1.21 kB
import numpy as np
class LambdaWarmUpCosineScheduler:
"""
note: use with a base_lr of 1.0
"""
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
self.lr_warm_up_steps = warm_up_steps
self.lr_start = lr_start
self.lr_min = lr_min
self.lr_max = lr_max
self.lr_max_decay_steps = max_decay_steps
self.last_lr = 0.
self.verbosity_interval = verbosity_interval
def schedule(self, n):
if self.verbosity_interval > 0:
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
if n < self.lr_warm_up_steps:
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
self.last_lr = lr
return lr
else:
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
t = min(t, 1.0)
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
1 + np.cos(t * np.pi))
self.last_lr = lr
return lr
def __call__(self, n):
return self.schedule(n)