Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- .gitattributes +38 -35
- 20words_mean_face.npy +3 -0
- README.md +14 -13
- app.py +237 -0
- mmod_human_face_detector.dat +0 -0
- requirements.txt +10 -0
- shape_predictor_68_face_landmarks.dat +3 -0
.gitattributes
CHANGED
@@ -1,35 +1,38 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.
|
29 |
-
*.
|
30 |
-
*.
|
31 |
-
*.
|
32 |
-
*.
|
33 |
-
*.
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
36 |
+
demo1.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
demo2.mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
lipreading.gif filter=lfs diff=lfs merge=lfs -text
|
20words_mean_face.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbf68b2044171e1160716df7c53e8bbfaa0ee8c61fb41171d04cb6092bb81422
|
3 |
+
size 1168
|
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
1 |
+
---
|
2 |
+
title: Speech Recognition from visual lip movement
|
3 |
+
emoji: 🫧
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
tags:
|
11 |
+
- making-demos
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import json
|
4 |
+
|
5 |
+
|
6 |
+
os.system('git clone https://github.com/facebookresearch/av_hubert.git')
|
7 |
+
os.chdir('/home/user/app/av_hubert')
|
8 |
+
os.system('git submodule init')
|
9 |
+
os.system('git submodule update')
|
10 |
+
os.chdir('/home/user/app/av_hubert/fairseq')
|
11 |
+
os.system('pip install ./')
|
12 |
+
os.system('pip install scipy')
|
13 |
+
os.system('pip install sentencepiece')
|
14 |
+
os.system('pip install python_speech_features')
|
15 |
+
os.system('pip install scikit-video')
|
16 |
+
os.system('pip install transformers')
|
17 |
+
os.system('pip install gradio==3.12')
|
18 |
+
os.system('pip install numpy==1.23.3')
|
19 |
+
|
20 |
+
|
21 |
+
# sys.path.append('/home/user/app/av_hubert')
|
22 |
+
sys.path.append('/home/user/app/av_hubert/avhubert')
|
23 |
+
|
24 |
+
print(sys.path)
|
25 |
+
print(os.listdir())
|
26 |
+
print(sys.argv, type(sys.argv))
|
27 |
+
sys.argv.append('dummy')
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
import dlib, cv2, os
|
32 |
+
import numpy as np
|
33 |
+
import skvideo
|
34 |
+
import skvideo.io
|
35 |
+
from tqdm import tqdm
|
36 |
+
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
|
37 |
+
from base64 import b64encode
|
38 |
+
import torch
|
39 |
+
import cv2
|
40 |
+
import tempfile
|
41 |
+
from argparse import Namespace
|
42 |
+
import fairseq
|
43 |
+
from fairseq import checkpoint_utils, options, tasks, utils
|
44 |
+
from fairseq.dataclass.configs import GenerationConfig
|
45 |
+
from huggingface_hub import hf_hub_download
|
46 |
+
import gradio as gr
|
47 |
+
from pytube import YouTube
|
48 |
+
|
49 |
+
# os.chdir('/home/user/app/av_hubert/avhubert')
|
50 |
+
|
51 |
+
user_dir = "/home/user/app/av_hubert/avhubert"
|
52 |
+
utils.import_user_module(Namespace(user_dir=user_dir))
|
53 |
+
data_dir = "/home/user/app/video"
|
54 |
+
|
55 |
+
ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
|
56 |
+
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
|
57 |
+
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
|
58 |
+
mean_face_path = "/home/user/app/20words_mean_face.npy"
|
59 |
+
mouth_roi_path = "/home/user/app/roi.mp4"
|
60 |
+
modalities = ["video"]
|
61 |
+
gen_subset = "test"
|
62 |
+
gen_cfg = GenerationConfig(beam=20)
|
63 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
|
64 |
+
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
|
65 |
+
saved_cfg.task.modalities = modalities
|
66 |
+
saved_cfg.task.data = data_dir
|
67 |
+
saved_cfg.task.label_dir = data_dir
|
68 |
+
task = tasks.setup_task(saved_cfg.task)
|
69 |
+
generator = task.build_generator(models, gen_cfg)
|
70 |
+
|
71 |
+
def get_youtube(video_url):
|
72 |
+
yt = YouTube(video_url)
|
73 |
+
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
74 |
+
print("Success download video")
|
75 |
+
print(abs_video_path)
|
76 |
+
return abs_video_path
|
77 |
+
|
78 |
+
def detect_landmark(image, detector, predictor):
|
79 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
80 |
+
face_locations = detector(gray, 1)
|
81 |
+
coords = None
|
82 |
+
for (_, face_location) in enumerate(face_locations):
|
83 |
+
if torch.cuda.is_available():
|
84 |
+
rect = face_location.rect
|
85 |
+
else:
|
86 |
+
rect = face_location
|
87 |
+
shape = predictor(gray, rect)
|
88 |
+
coords = np.zeros((68, 2), dtype=np.int32)
|
89 |
+
for i in range(0, 68):
|
90 |
+
coords[i] = (shape.part(i).x, shape.part(i).y)
|
91 |
+
return coords
|
92 |
+
|
93 |
+
# def predict_and_save(process_video):
|
94 |
+
# num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))
|
95 |
+
|
96 |
+
# tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
|
97 |
+
# label_cont = ["DUMMY\n"]
|
98 |
+
# with open(f"{data_dir}/test.tsv", "w") as fo:
|
99 |
+
# fo.write("".join(tsv_cont))
|
100 |
+
# with open(f"{data_dir}/test.wrd", "w") as fo:
|
101 |
+
# fo.write("".join(label_cont))
|
102 |
+
# task.load_dataset(gen_subset, task_cfg=saved_cfg.task)
|
103 |
+
|
104 |
+
# def decode_fn(x):
|
105 |
+
# dictionary = task.target_dictionary
|
106 |
+
# symbols_ignore = generator.symbols_to_strip_from_output
|
107 |
+
# symbols_ignore.add(dictionary.pad())
|
108 |
+
# return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)
|
109 |
+
|
110 |
+
# itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
|
111 |
+
# sample = next(itr)
|
112 |
+
# if torch.cuda.is_available():
|
113 |
+
# sample = utils.move_to_cuda(sample)
|
114 |
+
# hypos = task.inference_step(generator, models, sample)
|
115 |
+
# ref = decode_fn(sample['target'][0].int().cpu())
|
116 |
+
# hypo = hypos[0][0]['tokens'].int().cpu()
|
117 |
+
# hypo = decode_fn(hypo)
|
118 |
+
|
119 |
+
# # Collect timestamps and texts
|
120 |
+
# transcript = []
|
121 |
+
# for i, (start, end) in enumerate(sample['net_input']['video_lengths'], 1):
|
122 |
+
# start_time = float(start) / 16_000
|
123 |
+
# end_time = float(end) / 16_000
|
124 |
+
# text = hypo[i].strip()
|
125 |
+
# transcript.append({"timestamp": [start_time, end_time], "text": text})
|
126 |
+
|
127 |
+
# # Save transcript to a JSON file
|
128 |
+
# with open('speech_transcript.json', 'w') as outfile:
|
129 |
+
# json.dump(transcript, outfile, indent=4)
|
130 |
+
|
131 |
+
# return hypo
|
132 |
+
|
133 |
+
|
134 |
+
def preprocess_video(input_video_path):
|
135 |
+
if torch.cuda.is_available():
|
136 |
+
detector = dlib.cnn_face_detection_model_v1(face_detector_path)
|
137 |
+
else:
|
138 |
+
detector = dlib.get_frontal_face_detector()
|
139 |
+
|
140 |
+
predictor = dlib.shape_predictor(face_predictor_path)
|
141 |
+
STD_SIZE = (256, 256)
|
142 |
+
mean_face_landmarks = np.load(mean_face_path)
|
143 |
+
stablePntsIDs = [33, 36, 39, 42, 45]
|
144 |
+
videogen = skvideo.io.vread(input_video_path)
|
145 |
+
frames = np.array([frame for frame in videogen])
|
146 |
+
landmarks = []
|
147 |
+
for frame in tqdm(frames):
|
148 |
+
landmark = detect_landmark(frame, detector, predictor)
|
149 |
+
landmarks.append(landmark)
|
150 |
+
preprocessed_landmarks = landmarks_interpolate(landmarks)
|
151 |
+
rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE,
|
152 |
+
window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
|
153 |
+
write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
|
154 |
+
return mouth_roi_path
|
155 |
+
|
156 |
+
def predict(process_video):
|
157 |
+
num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))
|
158 |
+
|
159 |
+
tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
|
160 |
+
label_cont = ["DUMMY\n"]
|
161 |
+
with open(f"{data_dir}/test.tsv", "w") as fo:
|
162 |
+
fo.write("".join(tsv_cont))
|
163 |
+
with open(f"{data_dir}/test.wrd", "w") as fo:
|
164 |
+
fo.write("".join(label_cont))
|
165 |
+
task.load_dataset(gen_subset, task_cfg=saved_cfg.task)
|
166 |
+
|
167 |
+
def decode_fn(x):
|
168 |
+
dictionary = task.target_dictionary
|
169 |
+
symbols_ignore = generator.symbols_to_strip_from_output
|
170 |
+
symbols_ignore.add(dictionary.pad())
|
171 |
+
return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)
|
172 |
+
|
173 |
+
itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
|
174 |
+
sample = next(itr)
|
175 |
+
if torch.cuda.is_available():
|
176 |
+
sample = utils.move_to_cuda(sample)
|
177 |
+
hypos = task.inference_step(generator, models, sample)
|
178 |
+
ref = decode_fn(sample['target'][0].int().cpu())
|
179 |
+
hypo = hypos[0][0]['tokens'].int().cpu()
|
180 |
+
hypo = decode_fn(hypo)
|
181 |
+
return hypo
|
182 |
+
|
183 |
+
|
184 |
+
# ---- Gradio Layout -----
|
185 |
+
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
186 |
+
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
|
187 |
+
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True)
|
188 |
+
demo = gr.Blocks()
|
189 |
+
demo.encrypt = False
|
190 |
+
text_output = gr.Textbox()
|
191 |
+
|
192 |
+
with demo:
|
193 |
+
gr.Markdown('''
|
194 |
+
<div>
|
195 |
+
<h1 style='text-align: center'>Lip Reading Using Machine learning (Audio-Visual Hidden Unit BERT Model (AV-HuBERT))</h1>
|
196 |
+
</div>
|
197 |
+
''')
|
198 |
+
with gr.Row():
|
199 |
+
gr.Markdown('''
|
200 |
+
### Reading Lip movement with youtube link using Avhubert
|
201 |
+
##### Step 1a. Download video from youtube (Note: the length of video should be less than 10 seconds if not it will be cut and the face should be stable for better result)
|
202 |
+
##### Step 1b. Drag and drop videos to upload directly
|
203 |
+
##### Step 2. Generating landmarks surrounding mouth area
|
204 |
+
##### Step 3. Reading lip movement.
|
205 |
+
''')
|
206 |
+
with gr.Row():
|
207 |
+
gr.Markdown('''
|
208 |
+
### You can test by following examples:
|
209 |
+
''')
|
210 |
+
examples = gr.Examples(examples=
|
211 |
+
[ "https://www.youtube.com/watch?v=ZXVDnuepW2s",
|
212 |
+
"https://www.youtube.com/watch?v=X8_glJn1B8o",
|
213 |
+
"https://www.youtube.com/watch?v=80yqL2KzBVw"],
|
214 |
+
label="Examples", inputs=[youtube_url_in])
|
215 |
+
with gr.Column():
|
216 |
+
youtube_url_in.render()
|
217 |
+
download_youtube_btn = gr.Button("Download Youtube video")
|
218 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
219 |
+
video_in])
|
220 |
+
print(video_in)
|
221 |
+
with gr.Row():
|
222 |
+
video_in.render()
|
223 |
+
video_out.render()
|
224 |
+
with gr.Row():
|
225 |
+
detect_landmark_btn = gr.Button("Detect landmark")
|
226 |
+
detect_landmark_btn.click(preprocess_video, [video_in], [
|
227 |
+
video_out])
|
228 |
+
predict_btn = gr.Button("Predict")
|
229 |
+
#predict_btn.click(predict, [video_out], [text_output])
|
230 |
+
predict_btn.click(predict, [video_out], [text_output])
|
231 |
+
with gr.Row():
|
232 |
+
# video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False)
|
233 |
+
text_output.render()
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
demo.launch(debug=True)
|
mmod_human_face_detector.dat
ADDED
Binary file (730 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/facebookresearch/fairseq.git
|
2 |
+
scipy
|
3 |
+
sentencepiece
|
4 |
+
python_speech_features
|
5 |
+
scikit-video
|
6 |
+
scikit-image
|
7 |
+
dlib
|
8 |
+
opencv-python
|
9 |
+
pytube
|
10 |
+
httpx==0.24.1
|
shape_predictor_68_face_landmarks.dat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
|
3 |
+
size 99693937
|