HridayKharpude commited on
Commit
1d9c2aa
โ€ข
1 Parent(s): 600b7eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -6
app.py CHANGED
@@ -9,22 +9,18 @@ import tensorflow as tf
9
  model = tf.keras.models.load_model('TTM_model.h5')
10
 
11
  def config_audio(audio):
12
- print('enter2')
13
  header = 'ChromaSTFT RMS SpectralCentroid SpectralBandwidth Rolloff ZeroCrossingRate'
14
  for i in range(1, 21):
15
  header += f' mfcc{i}'
16
  header += ' label'
17
  header = header.split()
18
- print(1)
19
  file = open('predict_file.csv', 'w', newline='')
20
  with file:
21
  writer = csv.writer(file)
22
  writer.writerow(header)
23
- print(2)
24
  #taalfile = audio
25
  #print('stored in taalfile')
26
  y, sr = librosa.load(audio, mono=True, duration=30)
27
- print(3)
28
  rms = librosa.feature.rms(y=y)
29
  chroma = librosa.feature.chroma_stft(y=y, sr=sr)
30
  spec_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)
@@ -47,11 +43,9 @@ def config_audio(audio):
47
 
48
  def predict_audio(Audio_Input):
49
  audio=Audio_Input.name
50
- print('enter1')
51
  X_predict = config_audio(audio)
52
  taals = ['addhatrital','bhajani','dadra','deepchandi','ektal','jhaptal','rupak','trital']
53
  pred = model.predict(X_predict).flatten()
54
- print('exit1')
55
  return {taals[i]: float(pred[i]) for i in range(8)},audio
56
 
57
  audio = gr.inputs.Audio(source="upload", optional=False)
 
9
  model = tf.keras.models.load_model('TTM_model.h5')
10
 
11
  def config_audio(audio):
 
12
  header = 'ChromaSTFT RMS SpectralCentroid SpectralBandwidth Rolloff ZeroCrossingRate'
13
  for i in range(1, 21):
14
  header += f' mfcc{i}'
15
  header += ' label'
16
  header = header.split()
 
17
  file = open('predict_file.csv', 'w', newline='')
18
  with file:
19
  writer = csv.writer(file)
20
  writer.writerow(header)
 
21
  #taalfile = audio
22
  #print('stored in taalfile')
23
  y, sr = librosa.load(audio, mono=True, duration=30)
 
24
  rms = librosa.feature.rms(y=y)
25
  chroma = librosa.feature.chroma_stft(y=y, sr=sr)
26
  spec_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)
 
43
 
44
  def predict_audio(Audio_Input):
45
  audio=Audio_Input.name
 
46
  X_predict = config_audio(audio)
47
  taals = ['addhatrital','bhajani','dadra','deepchandi','ektal','jhaptal','rupak','trital']
48
  pred = model.predict(X_predict).flatten()
 
49
  return {taals[i]: float(pred[i]) for i in range(8)},audio
50
 
51
  audio = gr.inputs.Audio(source="upload", optional=False)