Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,8 @@ import streamlit as st
|
|
2 |
from transformers import pipeline
|
3 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
4 |
|
5 |
-
def tras_sum(input):
|
6 |
-
model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
|
7 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
9 |
-
# text summary generate
|
10 |
-
prefix = 'summary to en: '
|
11 |
-
src_text = prefix + input
|
12 |
-
input_ids = tokenizer(src_text, return_tensors="pt")
|
13 |
-
generated_tokens = model.generate(**input_ids)
|
14 |
-
traslated_summary = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
15 |
-
return traslated_summary
|
16 |
-
|
17 |
# Load the summarization & translation model pipeline
|
|
|
18 |
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
|
19 |
|
20 |
# Streamlit application title
|
|
|
2 |
from transformers import pipeline
|
3 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Load the summarization & translation model pipeline
|
6 |
+
tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048',return_all_scores=True)
|
7 |
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
|
8 |
|
9 |
# Streamlit application title
|