Horus7-kaduce / app.py
Horus7's picture
Update app.py
d08200f
raw
history blame
1.41 kB
import gradio as gr
import tensorflow as tf
import numpy as np
import os
import tensorflow as tf
import numpy as np
from keras.models import load_model
from tensorflow.keras.utils import load_img
# Charger le modèle
model = load_model('model_multi.h5')
def format_decimal(value):
decimal_value = format(value, ".2f")
return decimal_value
def detect(img):
img = np.expand_dims(img, axis=0)
img = img/255
prediction = model.predict(img)[0]
# if prediction[0] <= 0.80:
# return "Pneumonia Detected!"
# return "Pneumonia Not Detected!"
if format_decimal(prediction[0]) >= "0.5":
return "Risque d'infection bactérienne"
if format_decimal(prediction[1]) >= "0.5":
return "Poumon sain"
if format_decimal(prediction[2]) >= "0.5":
return "Risque d'infection biologique"
# result = detect(img)
# print(result)
os.system("tar -zxvf examples.tar.gz")
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',]
input = gr.inputs.Image(shape=(100,100))
title = "PneumoDetect: Pneumonia Detection from Chest X-Rays"
iface = gr.Interface(fn=detect, inputs=input, outputs="text",examples = examples, examples_per_page=20, title=title)
iface.launch(inline=False)