Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
import os | |
import tensorflow as tf | |
import numpy as np | |
from keras.models import load_model | |
from tensorflow.keras.utils import load_img | |
# Charger le modèle | |
model = load_model('model_multi.h5') | |
def format_decimal(value): | |
decimal_value = format(value, ".2f") | |
return decimal_value | |
def detect(img): | |
img = np.expand_dims(img, axis=0) | |
img = img/255 | |
prediction = model.predict(img)[0] | |
# Initialisation du texte | |
texte = "" | |
# Détermination du texte et de la couleur pour chaque classe | |
if format_decimal(prediction[0]) >= "0.5": | |
texte += 'Risque d\'infection bactérienne' | |
if format_decimal(prediction[1]) >= "0.5": | |
texte += 'Poumon sain' | |
if format_decimal(prediction[2]) >= "0.5": | |
texte += 'Risque d\'infection biologique' | |
if texte == "": | |
texte = "Classe indéterminée" | |
return texte | |
# result = detect(img) | |
# print(result) | |
os.system("tar -zxvf examples.tar.gz") | |
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg', | |
'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',] | |
input = gr.inputs.Image(shape=(100,100)) | |
title = "PneumoDetect: Detection de pneumonie par x-ray" | |
iface = gr.Interface(fn=detect, inputs=input, outputs="text",examples = examples, examples_per_page=20, title=title) | |
iface.launch(inline=False) | |