Spaces:
Running
on
Zero
Running
on
Zero
# Project EmbodiedGen | |
# | |
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or | |
# implied. See the License for the specific language governing | |
# permissions and limitations under the License. | |
import json | |
import os | |
from copy import deepcopy | |
import numpy as np | |
import sapien | |
import torch | |
import torchvision.transforms as transforms | |
from mani_skill.envs.sapien_env import BaseEnv | |
from mani_skill.sensors.camera import CameraConfig | |
from mani_skill.utils import sapien_utils | |
from mani_skill.utils.building import actors | |
from mani_skill.utils.registration import register_env | |
from mani_skill.utils.structs.actor import Actor | |
from mani_skill.utils.structs.pose import Pose | |
from mani_skill.utils.structs.types import ( | |
GPUMemoryConfig, | |
SceneConfig, | |
SimConfig, | |
) | |
from mani_skill.utils.visualization.misc import tile_images | |
from tqdm import tqdm | |
from embodied_gen.models.gs_model import GaussianOperator | |
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum | |
from embodied_gen.utils.geometry import bfs_placement, quaternion_multiply | |
from embodied_gen.utils.log import logger | |
from embodied_gen.utils.process_media import alpha_blend_rgba | |
from embodied_gen.utils.simulation import ( | |
SIM_COORD_ALIGN, | |
load_assets_from_layout_file, | |
) | |
__all__ = ["PickEmbodiedGen"] | |
class PickEmbodiedGen(BaseEnv): | |
SUPPORTED_ROBOTS = ["panda", "panda_wristcam", "fetch"] | |
goal_thresh = 0.0 | |
def __init__( | |
self, | |
*args, | |
robot_uids: str | list[str] = "panda", | |
robot_init_qpos_noise: float = 0.02, | |
num_envs: int = 1, | |
reconfiguration_freq: int = None, | |
**kwargs, | |
): | |
self.robot_init_qpos_noise = robot_init_qpos_noise | |
if reconfiguration_freq is None: | |
if num_envs == 1: | |
reconfiguration_freq = 1 | |
else: | |
reconfiguration_freq = 0 | |
# Init params from kwargs. | |
layout_file = kwargs.pop("layout_file", None) | |
replace_objs = kwargs.pop("replace_objs", True) | |
self.enable_grasp = kwargs.pop("enable_grasp", False) | |
self.init_quat = kwargs.pop("init_quat", [0.7071, 0, 0, 0.7071]) | |
# Add small offset in z-axis to avoid collision. | |
self.objs_z_offset = kwargs.pop("objs_z_offset", 0.002) | |
self.robot_z_offset = kwargs.pop("robot_z_offset", 0.002) | |
self.layouts = self.init_env_layouts( | |
layout_file, num_envs, replace_objs | |
) | |
self.robot_pose = self.compute_robot_init_pose( | |
self.layouts, num_envs, self.robot_z_offset | |
) | |
self.env_actors = dict() | |
self.image_transform = transforms.PILToTensor() | |
super().__init__( | |
*args, | |
robot_uids=robot_uids, | |
reconfiguration_freq=reconfiguration_freq, | |
num_envs=num_envs, | |
**kwargs, | |
) | |
self.bg_images = dict() | |
if self.render_mode == "hybrid": | |
self.bg_images = self.render_gs3d_images( | |
self.layouts, num_envs, self.init_quat | |
) | |
def init_env_layouts( | |
layout_file: str, num_envs: int, replace_objs: bool | |
) -> list[LayoutInfo]: | |
layout = LayoutInfo.from_dict(json.load(open(layout_file, "r"))) | |
layouts = [] | |
for env_idx in range(num_envs): | |
if replace_objs and env_idx > 0: | |
layout = bfs_placement(deepcopy(layout)) | |
layouts.append(layout) | |
return layouts | |
def compute_robot_init_pose( | |
layouts: list[LayoutInfo], num_envs: int, z_offset: float = 0.0 | |
) -> list[list[float]]: | |
robot_pose = [] | |
for env_idx in range(num_envs): | |
layout = layouts[env_idx] | |
robot_node = layout.relation[Scene3DItemEnum.ROBOT.value] | |
x, y, z, qx, qy, qz, qw = layout.position[robot_node] | |
robot_pose.append([x, y, z + z_offset, qw, qx, qy, qz]) | |
return robot_pose | |
def _default_sim_config(self): | |
return SimConfig( | |
scene_config=SceneConfig( | |
solver_position_iterations=30, | |
# contact_offset=0.04, | |
# rest_offset=0.001, | |
), | |
# sim_freq=200, | |
control_freq=50, | |
gpu_memory_config=GPUMemoryConfig( | |
max_rigid_contact_count=2**20, max_rigid_patch_count=2**19 | |
), | |
) | |
def _default_sensor_configs(self): | |
pose = sapien_utils.look_at(eye=[0.3, 0, 0.6], target=[-0.1, 0, 0.1]) | |
return [ | |
CameraConfig("base_camera", pose, 128, 128, np.pi / 2, 0.01, 100) | |
] | |
def _default_human_render_camera_configs(self): | |
pose = sapien_utils.look_at( | |
eye=[0.9, 0.0, 1.1], target=[0.0, 0.0, 0.9] | |
) | |
return CameraConfig( | |
"render_camera", pose, 256, 256, np.deg2rad(75), 0.01, 100 | |
) | |
def _load_agent(self, options: dict): | |
super()._load_agent(options, sapien.Pose(p=[-10, 0, 10])) | |
def _load_scene(self, options: dict): | |
all_objects = [] | |
logger.info(f"Loading assets and decomposition mesh collisions...") | |
for env_idx in range(self.num_envs): | |
env_actors = load_assets_from_layout_file( | |
self.scene, | |
self.layouts[env_idx], | |
z_offset=self.objs_z_offset, | |
init_quat=self.init_quat, | |
env_idx=env_idx, | |
) | |
self.env_actors[f"env{env_idx}"] = env_actors | |
all_objects.extend(env_actors.values()) | |
self.obj = all_objects[-1] | |
for obj in all_objects: | |
self.remove_from_state_dict_registry(obj) | |
self.all_objects = Actor.merge(all_objects, name="all_objects") | |
self.add_to_state_dict_registry(self.all_objects) | |
self.goal_site = actors.build_sphere( | |
self.scene, | |
radius=self.goal_thresh, | |
color=[0, 1, 0, 0], | |
name="goal_site", | |
body_type="kinematic", | |
add_collision=False, | |
initial_pose=sapien.Pose(), | |
) | |
self._hidden_objects.append(self.goal_site) | |
def _initialize_episode(self, env_idx: torch.Tensor, options: dict): | |
with torch.device(self.device): | |
b = len(env_idx) | |
goal_xyz = torch.zeros((b, 3)) | |
goal_xyz[:, :2] = torch.rand((b, 2)) * 0.2 - 0.1 | |
self.goal_site.set_pose(Pose.create_from_pq(goal_xyz)) | |
qpos = np.array( | |
[ | |
0.0, | |
np.pi / 8, | |
0, | |
-np.pi * 3 / 8, | |
0, | |
np.pi * 3 / 4, | |
np.pi / 4, | |
0.04, | |
0.04, | |
] | |
) | |
qpos = ( | |
np.random.normal( | |
0, self.robot_init_qpos_noise, (self.num_envs, len(qpos)) | |
) | |
+ qpos | |
) | |
qpos[:, -2:] = 0.04 | |
self.agent.robot.set_root_pose(np.array(self.robot_pose)) | |
self.agent.reset(qpos) | |
self.agent.init_qpos = qpos | |
self.agent.controller.controllers["gripper"].reset() | |
def render_gs3d_images( | |
self, layouts: list[LayoutInfo], num_envs: int, init_quat: list[float] | |
) -> dict[str, np.ndarray]: | |
sim_coord_align = ( | |
torch.tensor(SIM_COORD_ALIGN).to(torch.float32).to(self.device) | |
) | |
cameras = self.scene.sensors.copy() | |
cameras.update(self.scene.human_render_cameras) | |
bg_node = layouts[0].relation[Scene3DItemEnum.BACKGROUND.value] | |
gs_path = os.path.join(layouts[0].assets[bg_node], "gs_model.ply") | |
raw_gs: GaussianOperator = GaussianOperator.load_from_ply(gs_path) | |
bg_images = dict() | |
for env_idx in tqdm(range(num_envs), desc="Pre-rendering Background"): | |
layout = layouts[env_idx] | |
x, y, z, qx, qy, qz, qw = layout.position[bg_node] | |
qx, qy, qz, qw = quaternion_multiply([qx, qy, qz, qw], init_quat) | |
init_pose = torch.tensor([x, y, z, qx, qy, qz, qw]) | |
gs_model = raw_gs.get_gaussians(instance_pose=init_pose) | |
for key in cameras: | |
camera = cameras[key] | |
Ks = camera.camera.get_intrinsic_matrix() # (n_env, 3, 3) | |
c2w = camera.camera.get_model_matrix() # (n_env, 4, 4) | |
result = gs_model.render( | |
c2w[env_idx] @ sim_coord_align, | |
Ks[env_idx], | |
image_width=camera.config.width, | |
image_height=camera.config.height, | |
) | |
bg_images[f"{key}-env{env_idx}"] = result.rgb[..., ::-1] | |
return bg_images | |
def render(self): | |
if self.render_mode is None: | |
raise RuntimeError("render_mode is not set.") | |
if self.render_mode == "human": | |
return self.render_human() | |
elif self.render_mode == "rgb_array": | |
res = self.render_rgb_array() | |
return res | |
elif self.render_mode == "sensors": | |
res = self.render_sensors() | |
return res | |
elif self.render_mode == "all": | |
return self.render_all() | |
elif self.render_mode == "hybrid": | |
return self.hybrid_render() | |
else: | |
raise NotImplementedError( | |
f"Unsupported render mode {self.render_mode}." | |
) | |
def render_rgb_array( | |
self, camera_name: str = None, return_alpha: bool = False | |
): | |
for obj in self._hidden_objects: | |
obj.show_visual() | |
self.scene.update_render( | |
update_sensors=False, update_human_render_cameras=True | |
) | |
images = [] | |
render_images = self.scene.get_human_render_camera_images( | |
camera_name, return_alpha | |
) | |
for image in render_images.values(): | |
images.append(image) | |
if len(images) == 0: | |
return None | |
if len(images) == 1: | |
return images[0] | |
for obj in self._hidden_objects: | |
obj.hide_visual() | |
return tile_images(images) | |
def render_sensors(self): | |
images = [] | |
sensor_images = self.get_sensor_images() | |
for image in sensor_images.values(): | |
for img in image.values(): | |
images.append(img) | |
return tile_images(images) | |
def hybrid_render(self): | |
fg_images = self.render_rgb_array( | |
return_alpha=True | |
) # (n_env, h, w, 3) | |
images = [] | |
for key in self.bg_images: | |
if "render_camera" not in key: | |
continue | |
env_idx = int(key.split("-env")[-1]) | |
rgba = alpha_blend_rgba( | |
fg_images[env_idx].cpu().numpy(), self.bg_images[key] | |
) | |
images.append(self.image_transform(rgba)) | |
images = torch.stack(images, dim=0) | |
images = images.permute(0, 2, 3, 1) | |
return images[..., :3] | |
def evaluate(self): | |
obj_to_goal_pos = ( | |
self.obj.pose.p | |
) # self.goal_site.pose.p - self.obj.pose.p | |
is_obj_placed = ( | |
torch.linalg.norm(obj_to_goal_pos, axis=1) <= self.goal_thresh | |
) | |
is_grasped = self.agent.is_grasping(self.obj) | |
is_robot_static = self.agent.is_static(0.2) | |
return dict( | |
is_grasped=is_grasped, | |
obj_to_goal_pos=obj_to_goal_pos, | |
is_obj_placed=is_obj_placed, | |
is_robot_static=is_robot_static, | |
is_grasping=self.agent.is_grasping(self.obj), | |
success=torch.logical_and(is_obj_placed, is_robot_static), | |
) | |
def _get_obs_extra(self, info: dict): | |
return dict() | |
def compute_dense_reward(self, obs: any, action: torch.Tensor, info: dict): | |
tcp_to_obj_dist = torch.linalg.norm( | |
self.obj.pose.p - self.agent.tcp.pose.p, axis=1 | |
) | |
reaching_reward = 1 - torch.tanh(5 * tcp_to_obj_dist) | |
reward = reaching_reward | |
is_grasped = info["is_grasped"] | |
reward += is_grasped | |
# obj_to_goal_dist = torch.linalg.norm( | |
# self.goal_site.pose.p - self.obj.pose.p, axis=1 | |
# ) | |
obj_to_goal_dist = torch.linalg.norm( | |
self.obj.pose.p - self.obj.pose.p, axis=1 | |
) | |
place_reward = 1 - torch.tanh(5 * obj_to_goal_dist) | |
reward += place_reward * is_grasped | |
reward += info["is_obj_placed"] * is_grasped | |
static_reward = 1 - torch.tanh( | |
5 | |
* torch.linalg.norm(self.agent.robot.get_qvel()[..., :-2], axis=1) | |
) | |
reward += static_reward * info["is_obj_placed"] * is_grasped | |
reward[info["success"]] = 6 | |
return reward | |
def compute_normalized_dense_reward( | |
self, obs: any, action: torch.Tensor, info: dict | |
): | |
return self.compute_dense_reward(obs=obs, action=action, info=info) / 6 | |