Upload 4 files
Browse files- Dockerfile +16 -0
- app.py +41 -0
- mimodelo.weights.h5 +3 -0
- requirements.txt +6 -0
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Usa una imagen base de Python
|
| 2 |
+
FROM python:3.9
|
| 3 |
+
# Establece el directorio de trabajo
|
| 4 |
+
WORKDIR /code
|
| 5 |
+
|
| 6 |
+
# Copia los archivos necesarios al contenedor
|
| 7 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 8 |
+
RUN pip install --no-cache-dir -r /code/requirements.txt
|
| 9 |
+
RUN pip install fastapi uvicorn
|
| 10 |
+
|
| 11 |
+
COPY . .
|
| 12 |
+
|
| 13 |
+
RUN chmod -R 777 /code
|
| 14 |
+
|
| 15 |
+
# Comando para ejecutar la aplicaci贸n
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from fastapi import FastAPI, HTTPException
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import List
|
| 6 |
+
|
| 7 |
+
class InputData(BaseModel):
|
| 8 |
+
data: List[float] # Lista de caracter铆sticas num茅ricas (flotantes)
|
| 9 |
+
|
| 10 |
+
app = FastAPI()
|
| 11 |
+
|
| 12 |
+
# Funci贸n para construir el modelo manualmente
|
| 13 |
+
def build_model():
|
| 14 |
+
model = tf.keras.Sequential([
|
| 15 |
+
tf.keras.layers.Dense(units=4, activation='sigmoid', input_shape=(2,)),
|
| 16 |
+
tf.keras.layers.Dense(units=1, activation='sigmoid')
|
| 17 |
+
])
|
| 18 |
+
model.load_weights(
|
| 19 |
+
"mimodelo.weights.h5"
|
| 20 |
+
) # Aseg煤rate de que los nombres de las capas coincidan para que los pesos se carguen correctamente
|
| 21 |
+
model.compile(
|
| 22 |
+
loss="mean_squared_error", optimizer="adam", metrics=["accuracy"]
|
| 23 |
+
)
|
| 24 |
+
return model
|
| 25 |
+
|
| 26 |
+
model = build_model() # Construir el modelo al iniciar la aplicaci贸n
|
| 27 |
+
|
| 28 |
+
# Ruta de predicci贸n
|
| 29 |
+
@app.post("/predict/")
|
| 30 |
+
async def predict(data: InputData):
|
| 31 |
+
print(f"Data: {data}")
|
| 32 |
+
global model
|
| 33 |
+
try:
|
| 34 |
+
# Convertir la lista de entrada a un array de NumPy para la predicci贸n
|
| 35 |
+
input_data = np.array(data.data).reshape(
|
| 36 |
+
1, -1
|
| 37 |
+
) # Asumiendo que la entrada debe ser de forma (1, num_features)
|
| 38 |
+
prediction = model.predict(input_data).round()
|
| 39 |
+
return {"prediction": prediction.tolist()}
|
| 40 |
+
except Exception as e:
|
| 41 |
+
raise HTTPException(status_code=500, detail=str(e))
|
mimodelo.weights.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f37c17c6ceeea16f7c3d1c03a86551def6d8b2b2d3bcf4805375325dd2296888
|
| 3 |
+
size 19896
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow[cuda]
|
| 2 |
+
keras
|
| 3 |
+
fastapi
|
| 4 |
+
numpy
|
| 5 |
+
pydantic
|
| 6 |
+
uvicorn
|