Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,8 @@ import pytz
|
|
5 |
from pathlib import Path
|
6 |
|
7 |
def current_time():
|
8 |
-
|
9 |
-
|
10 |
|
11 |
print(f"[{current_time()}] 开始部署空间...")
|
12 |
|
@@ -83,58 +83,58 @@ SAMPLE_RATE = 16000
|
|
83 |
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'
|
84 |
|
85 |
def upload_audio(audio, sample_rate):
|
86 |
-
|
87 |
-
|
88 |
|
89 |
|
90 |
print(f"[{current_time()}] 日志:开始包装模型...")
|
91 |
class InferenceModel(object):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
return {
|
139 |
'encoder_input_tokens': (self.batch_size, self.inputs_length),
|
140 |
'decoder_input_tokens': (self.batch_size, self.outputs_length)
|
@@ -144,10 +144,10 @@ class InferenceModel(object):
|
|
144 |
"""解析用于训练模型的 gin 文件。"""
|
145 |
print(f"[{current_time()}] 日志:解析 gin 文件")
|
146 |
gin_bindings = [
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
]
|
152 |
with gin.unlock_config():
|
153 |
gin.parse_config_files_and_bindings(gin_files, gin_bindings, finalize_config=False)
|
@@ -158,11 +158,11 @@ class InferenceModel(object):
|
|
158 |
model_config = gin.get_configurable(network.T5Config)()
|
159 |
module = network.Transformer(config=model_config)
|
160 |
return models.ContinuousInputsEncoderDecoderModel(
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
|
167 |
|
168 |
def restore_from_checkpoint(self, checkpoint_path):
|
@@ -175,12 +175,12 @@ class InferenceModel(object):
|
|
175 |
partitioner=self.partitioner)
|
176 |
|
177 |
restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig(
|
178 |
-
|
179 |
|
180 |
train_state_axes = train_state_initializer.train_state_axes
|
181 |
self._predict_fn = self._get_predict_fn(train_state_axes)
|
182 |
self._train_state = train_state_initializer.from_checkpoint_or_scratch(
|
183 |
-
|
184 |
|
185 |
@functools.lru_cache()
|
186 |
def _get_predict_fn(self, train_state_axes):
|
@@ -189,11 +189,11 @@ class InferenceModel(object):
|
|
189 |
def partial_predict_fn(params, batch, decode_rng):
|
190 |
return self.model.predict_batch_with_aux(params, batch, decoder_params={'decode_rng': None})
|
191 |
return self.partitioner.partition(
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
)
|
198 |
|
199 |
def predict_tokens(self, batch, seed=0):
|
@@ -252,16 +252,16 @@ class InferenceModel(object):
|
|
252 |
def preprocess(self, ds):
|
253 |
pp_chain = [
|
254 |
functools.partial(
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
# 在训练期间进行缓存。
|
261 |
preprocessors.add_dummy_targets,
|
262 |
functools.partial(
|
263 |
-
|
264 |
-
|
265 |
]
|
266 |
for pp in pp_chain:
|
267 |
ds = pp(ds)
|
@@ -273,10 +273,10 @@ class InferenceModel(object):
|
|
273 |
# 向下取整到最接近的符号化时间步。
|
274 |
start_time -= start_time % (1 / self.codec.steps_per_second)
|
275 |
return {
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
}
|
281 |
|
282 |
@staticmethod
|
@@ -308,11 +308,11 @@ article = "<p style='text-align: center'>出错了?试试把文件转换为MP3
|
|
308 |
examples=[['canon.flac'], ['download.wav']]
|
309 |
|
310 |
gr.Interface(
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
).launch(server_port=7861)
|
|
|
5 |
from pathlib import Path
|
6 |
|
7 |
def current_time():
|
8 |
+
current = datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime("%Y年-%m月-%d日 %H时:%M分:%S秒")
|
9 |
+
return current
|
10 |
|
11 |
print(f"[{current_time()}] 开始部署空间...")
|
12 |
|
|
|
83 |
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'
|
84 |
|
85 |
def upload_audio(audio, sample_rate):
|
86 |
+
return note_seq.audio_io.wav_data_to_samples_librosa(
|
87 |
+
audio, sample_rate=sample_rate)
|
88 |
|
89 |
|
90 |
print(f"[{current_time()}] 日志:开始包装模型...")
|
91 |
class InferenceModel(object):
|
92 |
+
"""音乐转录的 T5X 模型包装器。"""
|
93 |
+
|
94 |
+
def __init__(self, checkpoint_path, model_type='mt3'):
|
95 |
+
if model_type == 'ismir2021':
|
96 |
+
num_velocity_bins = 127
|
97 |
+
self.encoding_spec = note_sequences.NoteEncodingSpec
|
98 |
+
self.inputs_length = 512
|
99 |
+
elif model_type == 'mt3':
|
100 |
+
num_velocity_bins = 1
|
101 |
+
self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec
|
102 |
+
self.inputs_length = 256
|
103 |
+
else:
|
104 |
+
raise ValueError('unknown model_type: %s' % model_type)
|
105 |
+
|
106 |
+
gin_files = ['/home/user/app/mt3/gin/model.gin',
|
107 |
+
'/home/user/app/mt3/gin/mt3.gin']
|
108 |
+
|
109 |
+
self.batch_size = 8
|
110 |
+
self.outputs_length = 1024
|
111 |
+
self.sequence_length = {'inputs': self.inputs_length,
|
112 |
+
'targets': self.outputs_length}
|
113 |
+
|
114 |
+
self.partitioner = t5x.partitioning.PjitPartitioner(
|
115 |
+
model_parallel_submesh=None, num_partitions=1)
|
116 |
+
|
117 |
+
print(f"[{current_time()}] 日志:构建编解码器")
|
118 |
+
self.spectrogram_config = spectrograms.SpectrogramConfig()
|
119 |
+
self.codec = vocabularies.build_codec(
|
120 |
+
vocab_config=vocabularies.VocabularyConfig(
|
121 |
+
num_velocity_bins=num_velocity_bins)
|
122 |
+
)
|
123 |
+
self.vocabulary = vocabularies.vocabulary_from_codec(self.codec)
|
124 |
+
self.output_features = {
|
125 |
+
'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2),
|
126 |
+
'targets': seqio.Feature(vocabulary=self.vocabulary),
|
127 |
+
}
|
128 |
+
|
129 |
+
print(f"[{current_time()}] 日志:创建 T5X 模型")
|
130 |
+
self._parse_gin(gin_files)
|
131 |
+
self.model = self._load_model()
|
132 |
+
|
133 |
+
print(f"[{current_time()}] 日志:恢复模型检查点")
|
134 |
+
self.restore_from_checkpoint(checkpoint_path)
|
135 |
+
|
136 |
+
@property
|
137 |
+
def input_shapes(self):
|
138 |
return {
|
139 |
'encoder_input_tokens': (self.batch_size, self.inputs_length),
|
140 |
'decoder_input_tokens': (self.batch_size, self.outputs_length)
|
|
|
144 |
"""解析用于训练模型的 gin 文件。"""
|
145 |
print(f"[{current_time()}] 日志:解析 gin 文件")
|
146 |
gin_bindings = [
|
147 |
+
'from __gin__ import dynamic_registration',
|
148 |
+
'from mt3 import vocabularies',
|
149 |
+
'VOCAB_CONFIG=@vocabularies.VocabularyConfig()',
|
150 |
+
'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS'
|
151 |
]
|
152 |
with gin.unlock_config():
|
153 |
gin.parse_config_files_and_bindings(gin_files, gin_bindings, finalize_config=False)
|
|
|
158 |
model_config = gin.get_configurable(network.T5Config)()
|
159 |
module = network.Transformer(config=model_config)
|
160 |
return models.ContinuousInputsEncoderDecoderModel(
|
161 |
+
module=module,
|
162 |
+
input_vocabulary=self.output_features['inputs'].vocabulary,
|
163 |
+
output_vocabulary=self.output_features['targets'].vocabulary,
|
164 |
+
optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0),
|
165 |
+
input_depth=spectrograms.input_depth(self.spectrogram_config))
|
166 |
|
167 |
|
168 |
def restore_from_checkpoint(self, checkpoint_path):
|
|
|
175 |
partitioner=self.partitioner)
|
176 |
|
177 |
restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig(
|
178 |
+
path=checkpoint_path, mode='specific', dtype='float32')
|
179 |
|
180 |
train_state_axes = train_state_initializer.train_state_axes
|
181 |
self._predict_fn = self._get_predict_fn(train_state_axes)
|
182 |
self._train_state = train_state_initializer.from_checkpoint_or_scratch(
|
183 |
+
[restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0))
|
184 |
|
185 |
@functools.lru_cache()
|
186 |
def _get_predict_fn(self, train_state_axes):
|
|
|
189 |
def partial_predict_fn(params, batch, decode_rng):
|
190 |
return self.model.predict_batch_with_aux(params, batch, decoder_params={'decode_rng': None})
|
191 |
return self.partitioner.partition(
|
192 |
+
partial_predict_fn,
|
193 |
+
in_axis_resources=(
|
194 |
+
train_state_axes.params,
|
195 |
+
t5x.partitioning.PartitionSpec('data',), None),
|
196 |
+
out_axis_resources=t5x.partitioning.PartitionSpec('data',)
|
197 |
)
|
198 |
|
199 |
def predict_tokens(self, batch, seed=0):
|
|
|
252 |
def preprocess(self, ds):
|
253 |
pp_chain = [
|
254 |
functools.partial(
|
255 |
+
t5.data.preprocessors.split_tokens_to_inputs_length,
|
256 |
+
sequence_length=self.sequence_length,
|
257 |
+
output_features=self.output_features,
|
258 |
+
feature_key='inputs',
|
259 |
+
additional_feature_keys=['input_times']),
|
260 |
# 在训练期间进行缓存。
|
261 |
preprocessors.add_dummy_targets,
|
262 |
functools.partial(
|
263 |
+
preprocessors.compute_spectrograms,
|
264 |
+
spectrogram_config=self.spectrogram_config)
|
265 |
]
|
266 |
for pp in pp_chain:
|
267 |
ds = pp(ds)
|
|
|
273 |
# 向下取整到最接近的符号化时间步。
|
274 |
start_time -= start_time % (1 / self.codec.steps_per_second)
|
275 |
return {
|
276 |
+
'est_tokens': tokens,
|
277 |
+
'start_time': start_time,
|
278 |
+
# 内部 MT3 代码期望原始输入,这里不使用。
|
279 |
+
'raw_inputs': []
|
280 |
}
|
281 |
|
282 |
@staticmethod
|
|
|
308 |
examples=[['canon.flac'], ['download.wav']]
|
309 |
|
310 |
gr.Interface(
|
311 |
+
inference,
|
312 |
+
gr.Audio(type="filepath", label="输入"),
|
313 |
+
outputs=gr.File(label="输出"),
|
314 |
+
title=title,
|
315 |
+
description=description,
|
316 |
+
article=article,
|
317 |
+
examples=examples
|
318 |
).launch(server_port=7861)
|