Spaces:
Running
Running
Upload 2 files
Browse files- .gitattributes +1 -0
- app.py +30 -35
- canon.flac +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
canon.flac filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -13,22 +13,18 @@ os.system("python3 -m pip install -e .")
|
|
13 |
os.system("python3 -m pip install --upgrade pip")
|
14 |
|
15 |
|
16 |
-
|
17 |
-
# install mt3
|
18 |
os.system("git clone --branch=main https://github.com/magenta/mt3")
|
19 |
os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp")
|
20 |
os.system("python3 -m pip install -e .")
|
21 |
os.system("pip install tensorflow_cpu")
|
22 |
-
#
|
23 |
os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")
|
24 |
|
25 |
-
#
|
26 |
os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")
|
27 |
|
28 |
-
#@title
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
|
34 |
import functools
|
@@ -45,7 +41,6 @@ import librosa
|
|
45 |
import note_seq
|
46 |
|
47 |
|
48 |
-
|
49 |
import seqio
|
50 |
import t5
|
51 |
import t5x
|
@@ -72,11 +67,11 @@ def upload_audio(audio, sample_rate):
|
|
72 |
|
73 |
|
74 |
class InferenceModel(object):
|
75 |
-
"""
|
76 |
|
77 |
def __init__(self, checkpoint_path, model_type='mt3'):
|
78 |
|
79 |
-
#
|
80 |
if model_type == 'ismir2021':
|
81 |
num_velocity_bins = 127
|
82 |
self.encoding_spec = note_sequences.NoteEncodingSpec
|
@@ -99,7 +94,7 @@ class InferenceModel(object):
|
|
99 |
self.partitioner = t5x.partitioning.PjitPartitioner(
|
100 |
model_parallel_submesh=None, num_partitions=1)
|
101 |
|
102 |
-
#
|
103 |
self.spectrogram_config = spectrograms.SpectrogramConfig()
|
104 |
self.codec = vocabularies.build_codec(
|
105 |
vocab_config=vocabularies.VocabularyConfig(
|
@@ -110,11 +105,11 @@ class InferenceModel(object):
|
|
110 |
'targets': seqio.Feature(vocabulary=self.vocabulary),
|
111 |
}
|
112 |
|
113 |
-
#
|
114 |
self._parse_gin(gin_files)
|
115 |
self.model = self._load_model()
|
116 |
|
117 |
-
#
|
118 |
self.restore_from_checkpoint(checkpoint_path)
|
119 |
|
120 |
@property
|
@@ -125,7 +120,7 @@ class InferenceModel(object):
|
|
125 |
}
|
126 |
|
127 |
def _parse_gin(self, gin_files):
|
128 |
-
"""
|
129 |
gin_bindings = [
|
130 |
'from __gin__ import dynamic_registration',
|
131 |
'from mt3 import vocabularies',
|
@@ -137,7 +132,7 @@ class InferenceModel(object):
|
|
137 |
gin_files, gin_bindings, finalize_config=False)
|
138 |
|
139 |
def _load_model(self):
|
140 |
-
"""
|
141 |
model_config = gin.get_configurable(network.T5Config)()
|
142 |
module = network.Transformer(config=model_config)
|
143 |
return models.ContinuousInputsEncoderDecoderModel(
|
@@ -149,7 +144,7 @@ class InferenceModel(object):
|
|
149 |
|
150 |
|
151 |
def restore_from_checkpoint(self, checkpoint_path):
|
152 |
-
"""
|
153 |
train_state_initializer = t5x.utils.TrainStateInitializer(
|
154 |
optimizer_def=self.model.optimizer_def,
|
155 |
init_fn=self.model.get_initial_variables,
|
@@ -166,7 +161,7 @@ class InferenceModel(object):
|
|
166 |
|
167 |
@functools.lru_cache()
|
168 |
def _get_predict_fn(self, train_state_axes):
|
169 |
-
"""
|
170 |
def partial_predict_fn(params, batch, decode_rng):
|
171 |
return self.model.predict_batch_with_aux(
|
172 |
params, batch, decoder_params={'decode_rng': None})
|
@@ -179,18 +174,18 @@ class InferenceModel(object):
|
|
179 |
)
|
180 |
|
181 |
def predict_tokens(self, batch, seed=0):
|
182 |
-
"""
|
183 |
prediction, _ = self._predict_fn(
|
184 |
-
|
185 |
return self.vocabulary.decode_tf(prediction).numpy()
|
186 |
|
187 |
def __call__(self, audio):
|
188 |
-
"""
|
189 |
|
190 |
-
|
191 |
-
audio
|
192 |
-
|
193 |
-
|
194 |
"""
|
195 |
ds = self.audio_to_dataset(audio)
|
196 |
ds = self.preprocess(ds)
|
@@ -211,7 +206,7 @@ class InferenceModel(object):
|
|
211 |
return result['est_ns']
|
212 |
|
213 |
def audio_to_dataset(self, audio):
|
214 |
-
"""
|
215 |
frames, frame_times = self._audio_to_frames(audio)
|
216 |
return tf.data.Dataset.from_tensors({
|
217 |
'inputs': frames,
|
@@ -219,7 +214,7 @@ class InferenceModel(object):
|
|
219 |
})
|
220 |
|
221 |
def _audio_to_frames(self, audio):
|
222 |
-
"""
|
223 |
frame_size = self.spectrogram_config.hop_width
|
224 |
padding = [0, frame_size - len(audio) % frame_size]
|
225 |
audio = np.pad(audio, padding, mode='constant')
|
@@ -236,7 +231,7 @@ class InferenceModel(object):
|
|
236 |
output_features=self.output_features,
|
237 |
feature_key='inputs',
|
238 |
additional_feature_keys=['input_times']),
|
239 |
-
#
|
240 |
preprocessors.add_dummy_targets,
|
241 |
functools.partial(
|
242 |
preprocessors.compute_spectrograms,
|
@@ -249,12 +244,12 @@ class InferenceModel(object):
|
|
249 |
def postprocess(self, tokens, example):
|
250 |
tokens = self._trim_eos(tokens)
|
251 |
start_time = example['input_times'][0]
|
252 |
-
#
|
253 |
start_time -= start_time % (1 / self.codec.steps_per_second)
|
254 |
return {
|
255 |
'est_tokens': tokens,
|
256 |
'start_time': start_time,
|
257 |
-
#
|
258 |
'raw_inputs': []
|
259 |
}
|
260 |
|
@@ -285,16 +280,16 @@ def inference(audio):
|
|
285 |
return './transcribed.mid'
|
286 |
|
287 |
title = "MT3"
|
288 |
-
description = "
|
289 |
|
290 |
-
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3:
|
291 |
|
292 |
-
examples=[['download.wav']]
|
293 |
|
294 |
gr.Interface(
|
295 |
inference,
|
296 |
-
gr.inputs.Audio(type="filepath", label="
|
297 |
-
[gr.outputs.File(label="
|
298 |
title=title,
|
299 |
description=description,
|
300 |
article=article,
|
|
|
13 |
os.system("python3 -m pip install --upgrade pip")
|
14 |
|
15 |
|
16 |
+
# 安装 mt3
|
|
|
17 |
os.system("git clone --branch=main https://github.com/magenta/mt3")
|
18 |
os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp")
|
19 |
os.system("python3 -m pip install -e .")
|
20 |
os.system("pip install tensorflow_cpu")
|
21 |
+
# 复制检查点
|
22 |
os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")
|
23 |
|
24 |
+
# 复制 soundfont 文件(原始文件来自 https://sites.google.com/site/soundfonts4u)
|
25 |
os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")
|
26 |
|
27 |
+
#@title 导入和定义
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
import functools
|
|
|
41 |
import note_seq
|
42 |
|
43 |
|
|
|
44 |
import seqio
|
45 |
import t5
|
46 |
import t5x
|
|
|
67 |
|
68 |
|
69 |
class InferenceModel(object):
|
70 |
+
"""音乐转录的 T5X 模型包装器。"""
|
71 |
|
72 |
def __init__(self, checkpoint_path, model_type='mt3'):
|
73 |
|
74 |
+
# 模型常量。
|
75 |
if model_type == 'ismir2021':
|
76 |
num_velocity_bins = 127
|
77 |
self.encoding_spec = note_sequences.NoteEncodingSpec
|
|
|
94 |
self.partitioner = t5x.partitioning.PjitPartitioner(
|
95 |
model_parallel_submesh=None, num_partitions=1)
|
96 |
|
97 |
+
# 构建编解码器和词汇表。
|
98 |
self.spectrogram_config = spectrograms.SpectrogramConfig()
|
99 |
self.codec = vocabularies.build_codec(
|
100 |
vocab_config=vocabularies.VocabularyConfig(
|
|
|
105 |
'targets': seqio.Feature(vocabulary=self.vocabulary),
|
106 |
}
|
107 |
|
108 |
+
# 创建 T5X 模型。
|
109 |
self._parse_gin(gin_files)
|
110 |
self.model = self._load_model()
|
111 |
|
112 |
+
# 从检查点中恢复。
|
113 |
self.restore_from_checkpoint(checkpoint_path)
|
114 |
|
115 |
@property
|
|
|
120 |
}
|
121 |
|
122 |
def _parse_gin(self, gin_files):
|
123 |
+
"""解析用于训练模型的 gin 文件。"""
|
124 |
gin_bindings = [
|
125 |
'from __gin__ import dynamic_registration',
|
126 |
'from mt3 import vocabularies',
|
|
|
132 |
gin_files, gin_bindings, finalize_config=False)
|
133 |
|
134 |
def _load_model(self):
|
135 |
+
"""在解析训练 gin 配置后加载 T5X `Model`。"""
|
136 |
model_config = gin.get_configurable(network.T5Config)()
|
137 |
module = network.Transformer(config=model_config)
|
138 |
return models.ContinuousInputsEncoderDecoderModel(
|
|
|
144 |
|
145 |
|
146 |
def restore_from_checkpoint(self, checkpoint_path):
|
147 |
+
"""从检查点中恢复训练状态,重置 self._predict_fn()。"""
|
148 |
train_state_initializer = t5x.utils.TrainStateInitializer(
|
149 |
optimizer_def=self.model.optimizer_def,
|
150 |
init_fn=self.model.get_initial_variables,
|
|
|
161 |
|
162 |
@functools.lru_cache()
|
163 |
def _get_predict_fn(self, train_state_axes):
|
164 |
+
"""生成一个分区的预测函数用于解码。"""
|
165 |
def partial_predict_fn(params, batch, decode_rng):
|
166 |
return self.model.predict_batch_with_aux(
|
167 |
params, batch, decoder_params={'decode_rng': None})
|
|
|
174 |
)
|
175 |
|
176 |
def predict_tokens(self, batch, seed=0):
|
177 |
+
"""从预处理的数据集批次中预测 tokens。"""
|
178 |
prediction, _ = self._predict_fn(
|
179 |
+
self._train_state.params, batch, jax.random.PRNGKey(seed))
|
180 |
return self.vocabulary.decode_tf(prediction).numpy()
|
181 |
|
182 |
def __call__(self, audio):
|
183 |
+
"""从音频样本推断出音符序列。
|
184 |
|
185 |
+
参数:
|
186 |
+
audio:16kHz 的单个音频样本的 1 维 numpy 数组。
|
187 |
+
返回:
|
188 |
+
转录音频的音符序列。
|
189 |
"""
|
190 |
ds = self.audio_to_dataset(audio)
|
191 |
ds = self.preprocess(ds)
|
|
|
206 |
return result['est_ns']
|
207 |
|
208 |
def audio_to_dataset(self, audio):
|
209 |
+
"""从输入音频创建一个包含频谱图的 TF Dataset。"""
|
210 |
frames, frame_times = self._audio_to_frames(audio)
|
211 |
return tf.data.Dataset.from_tensors({
|
212 |
'inputs': frames,
|
|
|
214 |
})
|
215 |
|
216 |
def _audio_to_frames(self, audio):
|
217 |
+
"""从音频计算频谱图帧。"""
|
218 |
frame_size = self.spectrogram_config.hop_width
|
219 |
padding = [0, frame_size - len(audio) % frame_size]
|
220 |
audio = np.pad(audio, padding, mode='constant')
|
|
|
231 |
output_features=self.output_features,
|
232 |
feature_key='inputs',
|
233 |
additional_feature_keys=['input_times']),
|
234 |
+
# 在训练期间进行缓存。
|
235 |
preprocessors.add_dummy_targets,
|
236 |
functools.partial(
|
237 |
preprocessors.compute_spectrograms,
|
|
|
244 |
def postprocess(self, tokens, example):
|
245 |
tokens = self._trim_eos(tokens)
|
246 |
start_time = example['input_times'][0]
|
247 |
+
# 向下取整到最接近的符号化时间步。
|
248 |
start_time -= start_time % (1 / self.codec.steps_per_second)
|
249 |
return {
|
250 |
'est_tokens': tokens,
|
251 |
'start_time': start_time,
|
252 |
+
# 内部 MT3 代码期望原始输入,这里不使用。
|
253 |
'raw_inputs': []
|
254 |
}
|
255 |
|
|
|
280 |
return './transcribed.mid'
|
281 |
|
282 |
title = "MT3"
|
283 |
+
description = "MT3:多任务多音轨音乐转录的 Gradio 演示。要使用它,只需上传音频文件,或点击示例以加载它们。更多信息请参阅下面的链接。"
|
284 |
|
285 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3: 多任务多音轨音乐转录</a> | <a href='https://github.com/magenta/mt3' target='_blank'>Github 仓库</a></p>"
|
286 |
|
287 |
+
examples=[['canon.flac'], ['download.wav']]
|
288 |
|
289 |
gr.Interface(
|
290 |
inference,
|
291 |
+
gr.inputs.Audio(type="filepath", label="输入"),
|
292 |
+
[gr.outputs.File(label="输出")],
|
293 |
title=title,
|
294 |
description=description,
|
295 |
article=article,
|
canon.flac
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d13c270188979b6840a736cbd85f5e1bdb12b1bdab3e35af8a4ae7eb2c1c80ac
|
3 |
+
size 6229211
|