Hmjz100 commited on
Commit
107f317
1 Parent(s): c01d9cd

Upload 2 files

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. app.py +30 -35
  3. canon.flac +3 -0
.gitattributes CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ canon.flac filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -13,22 +13,18 @@ os.system("python3 -m pip install -e .")
13
  os.system("python3 -m pip install --upgrade pip")
14
 
15
 
16
-
17
- # install mt3
18
  os.system("git clone --branch=main https://github.com/magenta/mt3")
19
  os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp")
20
  os.system("python3 -m pip install -e .")
21
  os.system("pip install tensorflow_cpu")
22
- # copy checkpoints
23
  os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")
24
 
25
- # copy soundfont (originally from https://sites.google.com/site/soundfonts4u)
26
  os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")
27
 
28
- #@title Imports and Definitions
29
-
30
-
31
-
32
 
33
 
34
  import functools
@@ -45,7 +41,6 @@ import librosa
45
  import note_seq
46
 
47
 
48
-
49
  import seqio
50
  import t5
51
  import t5x
@@ -72,11 +67,11 @@ def upload_audio(audio, sample_rate):
72
 
73
 
74
  class InferenceModel(object):
75
- """Wrapper of T5X model for music transcription."""
76
 
77
  def __init__(self, checkpoint_path, model_type='mt3'):
78
 
79
- # Model Constants.
80
  if model_type == 'ismir2021':
81
  num_velocity_bins = 127
82
  self.encoding_spec = note_sequences.NoteEncodingSpec
@@ -99,7 +94,7 @@ class InferenceModel(object):
99
  self.partitioner = t5x.partitioning.PjitPartitioner(
100
  model_parallel_submesh=None, num_partitions=1)
101
 
102
- # Build Codecs and Vocabularies.
103
  self.spectrogram_config = spectrograms.SpectrogramConfig()
104
  self.codec = vocabularies.build_codec(
105
  vocab_config=vocabularies.VocabularyConfig(
@@ -110,11 +105,11 @@ class InferenceModel(object):
110
  'targets': seqio.Feature(vocabulary=self.vocabulary),
111
  }
112
 
113
- # Create a T5X model.
114
  self._parse_gin(gin_files)
115
  self.model = self._load_model()
116
 
117
- # Restore from checkpoint.
118
  self.restore_from_checkpoint(checkpoint_path)
119
 
120
  @property
@@ -125,7 +120,7 @@ class InferenceModel(object):
125
  }
126
 
127
  def _parse_gin(self, gin_files):
128
- """Parse gin files used to train the model."""
129
  gin_bindings = [
130
  'from __gin__ import dynamic_registration',
131
  'from mt3 import vocabularies',
@@ -137,7 +132,7 @@ class InferenceModel(object):
137
  gin_files, gin_bindings, finalize_config=False)
138
 
139
  def _load_model(self):
140
- """Load up a T5X `Model` after parsing training gin config."""
141
  model_config = gin.get_configurable(network.T5Config)()
142
  module = network.Transformer(config=model_config)
143
  return models.ContinuousInputsEncoderDecoderModel(
@@ -149,7 +144,7 @@ class InferenceModel(object):
149
 
150
 
151
  def restore_from_checkpoint(self, checkpoint_path):
152
- """Restore training state from checkpoint, resets self._predict_fn()."""
153
  train_state_initializer = t5x.utils.TrainStateInitializer(
154
  optimizer_def=self.model.optimizer_def,
155
  init_fn=self.model.get_initial_variables,
@@ -166,7 +161,7 @@ class InferenceModel(object):
166
 
167
  @functools.lru_cache()
168
  def _get_predict_fn(self, train_state_axes):
169
- """Generate a partitioned prediction function for decoding."""
170
  def partial_predict_fn(params, batch, decode_rng):
171
  return self.model.predict_batch_with_aux(
172
  params, batch, decoder_params={'decode_rng': None})
@@ -179,18 +174,18 @@ class InferenceModel(object):
179
  )
180
 
181
  def predict_tokens(self, batch, seed=0):
182
- """Predict tokens from preprocessed dataset batch."""
183
  prediction, _ = self._predict_fn(
184
- self._train_state.params, batch, jax.random.PRNGKey(seed))
185
  return self.vocabulary.decode_tf(prediction).numpy()
186
 
187
  def __call__(self, audio):
188
- """Infer note sequence from audio samples.
189
 
190
- Args:
191
- audio: 1-d numpy array of audio samples (16kHz) for a single example.
192
- Returns:
193
- A note_sequence of the transcribed audio.
194
  """
195
  ds = self.audio_to_dataset(audio)
196
  ds = self.preprocess(ds)
@@ -211,7 +206,7 @@ class InferenceModel(object):
211
  return result['est_ns']
212
 
213
  def audio_to_dataset(self, audio):
214
- """Create a TF Dataset of spectrograms from input audio."""
215
  frames, frame_times = self._audio_to_frames(audio)
216
  return tf.data.Dataset.from_tensors({
217
  'inputs': frames,
@@ -219,7 +214,7 @@ class InferenceModel(object):
219
  })
220
 
221
  def _audio_to_frames(self, audio):
222
- """Compute spectrogram frames from audio."""
223
  frame_size = self.spectrogram_config.hop_width
224
  padding = [0, frame_size - len(audio) % frame_size]
225
  audio = np.pad(audio, padding, mode='constant')
@@ -236,7 +231,7 @@ class InferenceModel(object):
236
  output_features=self.output_features,
237
  feature_key='inputs',
238
  additional_feature_keys=['input_times']),
239
- # Cache occurs here during training.
240
  preprocessors.add_dummy_targets,
241
  functools.partial(
242
  preprocessors.compute_spectrograms,
@@ -249,12 +244,12 @@ class InferenceModel(object):
249
  def postprocess(self, tokens, example):
250
  tokens = self._trim_eos(tokens)
251
  start_time = example['input_times'][0]
252
- # Round down to nearest symbolic token step.
253
  start_time -= start_time % (1 / self.codec.steps_per_second)
254
  return {
255
  'est_tokens': tokens,
256
  'start_time': start_time,
257
- # Internal MT3 code expects raw inputs, not used here.
258
  'raw_inputs': []
259
  }
260
 
@@ -285,16 +280,16 @@ def inference(audio):
285
  return './transcribed.mid'
286
 
287
  title = "MT3"
288
- description = "Gradio demo for MT3: Multi-Task Multitrack Music Transcription. To use it, simply upload your audio file, or click one of the examples to load them. Read more at the links below."
289
 
290
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3: Multi-Task Multitrack Music Transcription</a> | <a href='https://github.com/magenta/mt3' target='_blank'>Github Repo</a></p>"
291
 
292
- examples=[['download.wav']]
293
 
294
  gr.Interface(
295
  inference,
296
- gr.inputs.Audio(type="filepath", label="Input"),
297
- [gr.outputs.File(label="Output")],
298
  title=title,
299
  description=description,
300
  article=article,
 
13
  os.system("python3 -m pip install --upgrade pip")
14
 
15
 
16
+ # 安装 mt3
 
17
  os.system("git clone --branch=main https://github.com/magenta/mt3")
18
  os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp")
19
  os.system("python3 -m pip install -e .")
20
  os.system("pip install tensorflow_cpu")
21
+ # 复制检查点
22
  os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")
23
 
24
+ # 复制 soundfont 文件(原始文件来自 https://sites.google.com/site/soundfonts4u
25
  os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")
26
 
27
+ #@title 导入和定义
 
 
 
28
 
29
 
30
  import functools
 
41
  import note_seq
42
 
43
 
 
44
  import seqio
45
  import t5
46
  import t5x
 
67
 
68
 
69
  class InferenceModel(object):
70
+ """音乐转录的 T5X 模型包装器。"""
71
 
72
  def __init__(self, checkpoint_path, model_type='mt3'):
73
 
74
+ # 模型常量。
75
  if model_type == 'ismir2021':
76
  num_velocity_bins = 127
77
  self.encoding_spec = note_sequences.NoteEncodingSpec
 
94
  self.partitioner = t5x.partitioning.PjitPartitioner(
95
  model_parallel_submesh=None, num_partitions=1)
96
 
97
+ # 构建编解码器和词汇表。
98
  self.spectrogram_config = spectrograms.SpectrogramConfig()
99
  self.codec = vocabularies.build_codec(
100
  vocab_config=vocabularies.VocabularyConfig(
 
105
  'targets': seqio.Feature(vocabulary=self.vocabulary),
106
  }
107
 
108
+ # 创建 T5X 模型。
109
  self._parse_gin(gin_files)
110
  self.model = self._load_model()
111
 
112
+ # 从检查点中恢复。
113
  self.restore_from_checkpoint(checkpoint_path)
114
 
115
  @property
 
120
  }
121
 
122
  def _parse_gin(self, gin_files):
123
+ """解析用于训练模型的 gin 文件。"""
124
  gin_bindings = [
125
  'from __gin__ import dynamic_registration',
126
  'from mt3 import vocabularies',
 
132
  gin_files, gin_bindings, finalize_config=False)
133
 
134
  def _load_model(self):
135
+ """在解析训练 gin 配置后加载 T5X `Model`。"""
136
  model_config = gin.get_configurable(network.T5Config)()
137
  module = network.Transformer(config=model_config)
138
  return models.ContinuousInputsEncoderDecoderModel(
 
144
 
145
 
146
  def restore_from_checkpoint(self, checkpoint_path):
147
+ """从检查点中恢复训练状态,重置 self._predict_fn()"""
148
  train_state_initializer = t5x.utils.TrainStateInitializer(
149
  optimizer_def=self.model.optimizer_def,
150
  init_fn=self.model.get_initial_variables,
 
161
 
162
  @functools.lru_cache()
163
  def _get_predict_fn(self, train_state_axes):
164
+ """生成一个分区的预测函数用于解码。"""
165
  def partial_predict_fn(params, batch, decode_rng):
166
  return self.model.predict_batch_with_aux(
167
  params, batch, decoder_params={'decode_rng': None})
 
174
  )
175
 
176
  def predict_tokens(self, batch, seed=0):
177
+ """从预处理的数据集批次中预测 tokens"""
178
  prediction, _ = self._predict_fn(
179
+ self._train_state.params, batch, jax.random.PRNGKey(seed))
180
  return self.vocabulary.decode_tf(prediction).numpy()
181
 
182
  def __call__(self, audio):
183
+ """从音频样本推断出音符序列。
184
 
185
+ 参数:
186
+ audio:16kHz 的单个音频样本的 1 numpy 数组。
187
+ 返回:
188
+ 转录音频的音符序列。
189
  """
190
  ds = self.audio_to_dataset(audio)
191
  ds = self.preprocess(ds)
 
206
  return result['est_ns']
207
 
208
  def audio_to_dataset(self, audio):
209
+ """从输入音频创建一个包含频谱图的 TF Dataset"""
210
  frames, frame_times = self._audio_to_frames(audio)
211
  return tf.data.Dataset.from_tensors({
212
  'inputs': frames,
 
214
  })
215
 
216
  def _audio_to_frames(self, audio):
217
+ """从音频计算频谱图帧。"""
218
  frame_size = self.spectrogram_config.hop_width
219
  padding = [0, frame_size - len(audio) % frame_size]
220
  audio = np.pad(audio, padding, mode='constant')
 
231
  output_features=self.output_features,
232
  feature_key='inputs',
233
  additional_feature_keys=['input_times']),
234
+ # 在训练期间进行缓存。
235
  preprocessors.add_dummy_targets,
236
  functools.partial(
237
  preprocessors.compute_spectrograms,
 
244
  def postprocess(self, tokens, example):
245
  tokens = self._trim_eos(tokens)
246
  start_time = example['input_times'][0]
247
+ # 向下取整到最接近的符号化时间步。
248
  start_time -= start_time % (1 / self.codec.steps_per_second)
249
  return {
250
  'est_tokens': tokens,
251
  'start_time': start_time,
252
+ # 内部 MT3 代码期望原始输入,这里不使用。
253
  'raw_inputs': []
254
  }
255
 
 
280
  return './transcribed.mid'
281
 
282
  title = "MT3"
283
+ description = "MT3:多任务多音轨音乐转录的 Gradio 演示。要使用它,只需上传音频文件,或点击示例以加载它们。更多信息请参阅下面的链接。"
284
 
285
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3: 多任务多音轨音乐转录</a> | <a href='https://github.com/magenta/mt3' target='_blank'>Github 仓库</a></p>"
286
 
287
+ examples=[['canon.flac'], ['download.wav']]
288
 
289
  gr.Interface(
290
  inference,
291
+ gr.inputs.Audio(type="filepath", label="输入"),
292
+ [gr.outputs.File(label="输出")],
293
  title=title,
294
  description=description,
295
  article=article,
canon.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d13c270188979b6840a736cbd85f5e1bdb12b1bdab3e35af8a4ae7eb2c1c80ac
3
+ size 6229211