HimanshuGoyal2004's picture
fix
1598ff7
import json
import os
import base64
from typing import Dict, List, Any
import requests
import gradio as gr
from dotenv import load_dotenv
from datasets import load_dataset
try:
from langchain_core.documents import Document
except ImportError:
try:
from langchain.docstore.document import Document
except ImportError:
try:
from langchain.schema import Document
except ImportError:
# Fallback: Create a simple Document class
class Document:
def __init__(self, page_content: str, metadata: dict = None):
self.page_content = page_content
self.metadata = metadata or {}
# Import RecursiveCharacterTextSplitter with fallback
RecursiveCharacterTextSplitter = None
try:
from langchain.text_splitter import RecursiveCharacterTextSplitter
print("βœ… Using langchain.text_splitter.RecursiveCharacterTextSplitter")
except ImportError:
try:
from langchain_text_splitters import RecursiveCharacterTextSplitter
print("βœ… Using langchain_text_splitters.RecursiveCharacterTextSplitter")
except ImportError:
print("⚠️ Using fallback RecursiveCharacterTextSplitter")
# Fallback: Simple text splitter
class RecursiveCharacterTextSplitter:
def __init__(self, chunk_size=500, chunk_overlap=50, **kwargs):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
print(f"πŸ“ Initialized fallback text splitter with chunk_size={chunk_size}")
def split_documents(self, documents):
"""Simple document splitting fallback"""
print(f"πŸ”„ Splitting {len(documents)} documents using fallback method...")
result = []
for doc in documents:
text = doc.page_content
# Simple chunking
for i in range(0, len(text), self.chunk_size - self.chunk_overlap):
chunk = text[i:i + self.chunk_size]
if chunk.strip():
result.append(Document(page_content=chunk, metadata=doc.metadata))
print(f"βœ… Split into {len(result)} chunks")
return result
from langchain_community.retrievers import BM25Retriever
# Load environment variables
load_dotenv()
class GitHubMCPServer:
"""GitHub MCP Server for repository scanning, file access, and CVE retrieval"""
def __init__(self):
self.github_token = os.getenv("GITHUB_TOKEN")
if not self.github_token:
raise ValueError("GITHUB_TOKEN environment variable is required")
self.headers = {
"Authorization": f"token {self.github_token}",
"Accept": "application/vnd.github.v3+json"
}
# Initialize CVE retriever
self.cve_retriever = None
self._initialize_cve_retriever()
def _initialize_cve_retriever(self):
"""Initialize the CVE retriever with Hugging Face dataset"""
try:
print("πŸ”„ Loading CVE dataset from Hugging Face...")
# Load CVE dataset from Hugging Face
# Login using `huggingface-cli login` to access this dataset
knowledge_base = load_dataset("CIRCL/vulnerability", split="train")
print(f"πŸ“Š Loaded {len(knowledge_base)} vulnerability records from Hugging Face")
# Debug: Print first few records to understand dataset structure
print("πŸ” Dataset structure analysis:")
print(f"Dataset columns: {knowledge_base.column_names}")
for i in range(min(2, len(knowledge_base))):
print(f"Record {i}: {dict(knowledge_base[i])}")
# Filter to include only CVE entries (not GHSA)
print("πŸ” Filtering for CVE entries only...")
cve_dataset = knowledge_base.filter(lambda row: str(row["id"]).startswith("CVE-"))
print(f"πŸ“Š Filtered to {len(cve_dataset)} CVE records (excluded GHSA entries)")
# Convert dataset entries to Document objects with metadata
source_docs = []
for record in cve_dataset:
cve_id = record.get('id', '')
description = record.get('description', '')
# Skip records without essential information
if not cve_id or not description:
continue
# Create document content
content = f"CVE ID: {cve_id}\nDescription: {description}"
# Create metadata
metadata = {
'cve_id': str(cve_id),
'description': str(description)
}
source_docs.append(Document(page_content=content, metadata=metadata))
print(f"πŸ“ Created {len(source_docs)} CVE document objects")
if not source_docs:
print("❌ No valid CVE documents found in dataset")
self.cve_retriever = None
return
# Split documents into smaller chunks for better retrieval
print("πŸ”„ Initializing text splitter...")
try:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, # Characters per chunk
chunk_overlap=50, # Overlap between chunks to maintain context
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""], # Priority order for splitting
)
print("βœ… Text splitter initialized successfully")
except Exception as splitter_error:
print(f"❌ Text splitter initialization failed: {splitter_error}")
# Use simple fallback
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
print("βœ… Using simple fallback text splitter")
print("πŸ”„ Processing documents with text splitter...")
try:
docs_processed = text_splitter.split_documents(source_docs)
print(f"πŸ“š Knowledge base prepared with {len(docs_processed)} document chunks")
except Exception as processing_error:
print(f"❌ Document processing failed: {processing_error}")
# Use original documents without splitting as fallback
docs_processed = source_docs
print(f"βœ… Using original documents without splitting: {len(docs_processed)} documents")
# Initialize BM25 retriever
print("πŸ”„ Initializing BM25 retriever...")
try:
self.cve_retriever = BM25Retriever.from_documents(
docs_processed,
k=3
)
print(f"βœ… CVE Retriever initialized with {len(docs_processed)} document chunks")
except Exception as retriever_error:
print(f"❌ BM25 retriever initialization failed: {retriever_error}")
self.cve_retriever = None
except Exception as e:
print(f"❌ Error initializing CVE retriever: {str(e)}")
print("πŸ’‘ Make sure you have access to the Hugging Face dataset 'CIRCL/vulnerability'")
print("πŸ’‘ You may need to login with: huggingface-cli login")
print("πŸ’‘ Dataset columns should be: id, title, description, cpes")
self.cve_retriever = None
def get_repository_info(self, owner: str, repo: str) -> dict:
"""Get basic repository information"""
try:
url = f"https://api.github.com/repos/{owner}/{repo}"
response = requests.get(url, headers=self.headers)
if response.status_code == 200:
data = response.json()
return {
"success": True,
"repository_name": data["name"],
"full_name": data["full_name"],
"description": data.get("description", "No description available"),
"primary_language": data.get("language", "Unknown"),
"size_kb": data["size"],
"stars": data["stargazers_count"],
"forks": data["forks_count"],
"default_branch": data["default_branch"],
"created_date": data["created_at"][:10],
"last_updated": data["updated_at"][:10],
"is_private": data["private"],
"clone_url": data["clone_url"]
}
else:
return {
"success": False,
"error": f"Repository not found or inaccessible (HTTP {response.status_code})",
"status_code": response.status_code
}
except Exception as e:
return {
"success": False,
"error": f"Failed to fetch repository information: {str(e)}"
}
def get_file_content(self, owner: str, repo: str, path: str) -> str:
"""Get content of a specific file - returns just the file content as string"""
try:
url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}"
response = requests.get(url, headers=self.headers)
if response.status_code == 200:
data = response.json()
if data["type"] == "file" and "content" in data:
# Decode base64 content
try:
content = base64.b64decode(data["content"]).decode('utf-8')
return content
except UnicodeDecodeError:
return f"ERROR: File '{path}' contains binary data that cannot be decoded as text"
else:
return f"ERROR: Path '{path}' is not a file or content is not available"
else:
return f"ERROR: File '{path}' not found or inaccessible (HTTP {response.status_code})"
except Exception as e:
return f"ERROR: Failed to fetch file content for '{path}': {str(e)}"
def scan_repository(self, owner: str, repo: str, extensions: str = ".py,.js,.ts,.php,.java") -> list:
"""Scan repository for code files - returns simple list of file paths"""
try:
ext_list = [ext.strip() for ext in extensions.split(",") if ext.strip()]
all_files = []
self._scan_directory_sync(owner, repo, "", ext_list, all_files)
# Return simple list of file paths for easier processing by CodeAgent
file_paths = [file_info.get('path', '') for file_info in all_files[:50]] # Limit to 50 files
return file_paths
except Exception as e:
return [f"ERROR: Failed to scan repository: {str(e)}"]
def _scan_directory_sync(self, owner: str, repo: str, path: str, extensions: List[str], all_files: List[Dict]):
"""Recursively scan directory for files"""
try:
url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}"
response = requests.get(url, headers=self.headers)
if response.status_code == 200:
data = response.json()
for item in data:
if item["type"] == "file":
if any(item["name"].endswith(ext) for ext in extensions):
all_files.append({
"name": item["name"],
"path": item["path"],
"type": item["type"],
"size": item.get("size", 0),
"sha": item["sha"]
})
elif item["type"] == "dir" and len(all_files) < 100:
self._scan_directory_sync(owner, repo, item["path"], extensions, all_files)
except Exception:
pass
def search_cve_database(self, query: str) -> str:
"""Search CVE database for relevant vulnerability information"""
if not self.cve_retriever:
return "❌ CVE retriever not properly initialized. Please check Hugging Face dataset access."
try:
# Retrieve relevant documents
docs = self.cve_retriever.invoke(query)
if not docs:
return f"No relevant CVE information found for query: '{query}'"
# Format the retrieved CVE information
result = f"πŸ” **CVE Knowledge Base Results for: '{query}'**\n\n"
for i, doc in enumerate(docs, 1):
metadata = doc.metadata
result += f"**Result {i}:**\n"
result += f"- **CVE ID**: {metadata.get('cve_id', 'Unknown')}\n"
# Extract description from content or metadata
description = metadata.get('description', '')
if not description:
content_lines = doc.page_content.split('\n')
desc_line = next((line for line in content_lines if line.startswith('Description:')), '')
description = desc_line.replace('Description: ', '').strip() if desc_line else 'No description available'
result += f"- **Description**: {description[:200]}{'...' if len(description) > 200 else ''}\n"
result += "---\n"
# Add summary of common patterns
cve_ids = [doc.metadata.get('cve_id') for doc in docs if doc.metadata.get('cve_id')]
result += f"\n**πŸ“Š Analysis Summary:**\n"
result += f"- **CVE Examples**: {', '.join(cve_ids[:3])}{'...' if len(cve_ids) > 3 else ''}\n"
result += f"- **Total Matches**: {len(docs)}\n"
return result
except Exception as e:
return f"❌ Error retrieving CVE information: {str(e)}"
def simple_cve_search(self, query: str, k: int = 3) -> str:
"""Simple CVE search that returns only CVE IDs and descriptions for multi-agent workflow"""
if not self.cve_retriever:
return "❌ CVE retriever not properly initialized. Please check Hugging Face dataset access."
try:
# Set retriever to return k results
original_k = self.cve_retriever.k
self.cve_retriever.k = k
# Retrieve relevant documents
docs = self.cve_retriever.invoke(query)
# Restore original k
self.cve_retriever.k = original_k
if not docs:
return f"No relevant CVE information found for query: '{query}'"
# Format simple results - just CVE ID and description
result = f"Top {len(docs)} CVE matches for '{query}':\n\n"
for i, doc in enumerate(docs, 1):
metadata = doc.metadata
cve_id = metadata.get('cve_id', 'Unknown')
# Extract description from metadata or content
description = metadata.get('description', '')
if not description:
content_lines = doc.page_content.split('\n')
desc_line = next((line for line in content_lines if line.startswith('Description:')), '')
description = desc_line.replace('Description: ', '').strip() if desc_line else 'No description available'
result += f"{i}. {cve_id}\n"
result += f" {description[:150]}{'...' if len(description) > 150 else ''}\n\n"
return result.strip()
except Exception as e:
return f"❌ Error retrieving CVE information: {str(e)}"
def get_nvd_cve_details(self, cve_id: str) -> str:
"""
Fetches detailed CVE information from NVD (National Vulnerability Database).
Args:
cve_id: The CVE identifier (e.g., 'CVE-2019-16515')
Returns:
Formatted string containing detailed CVE information from NVD
"""
try:
# Validate and clean CVE ID format
cve_id = cve_id.strip().upper()
if not cve_id.startswith('CVE-'):
return f"❌ Invalid CVE ID format: '{cve_id}'\nCVE ID must start with 'CVE-' (e.g., CVE-2019-16515)"
# NVD API endpoint
nvd_api_url = "https://services.nvd.nist.gov/rest/json/cves/2.0"
nvd_web_url = f"https://nvd.nist.gov/vuln/detail/{cve_id}"
# Make request to NVD API
params = {"cveId": cve_id}
headers = {
"User-Agent": "VulnerabilityScanner/1.0 (GitHub Security Analysis Tool)"
}
print(f"πŸ” Fetching NVD details for {cve_id}...")
response = requests.get(nvd_api_url, params=params, headers=headers, timeout=15)
if response.status_code == 200:
data = response.json()
# Check if CVE was found
if data.get('resultsPerPage', 0) == 0:
return f"⚠️ CVE not found in NVD database: {cve_id}\n\nπŸ”— **NVD URL**: {nvd_web_url}\n\nNote: The CVE may not yet be published in NVD or the ID might be incorrect."
# Extract vulnerability data
vuln = data['vulnerabilities'][0]['cve']
# Build formatted result
result = f"πŸ“‹ **NVD CVE Details: {cve_id}**\n\n"
result += f"πŸ”— **NVD URL**: {nvd_web_url}\n\n"
# Status and dates
result += f"**Status**: {vuln.get('vulnStatus', 'N/A')}\n"
result += f"**Published**: {vuln.get('published', 'N/A')[:10]}\n"
result += f"**Last Modified**: {vuln.get('lastModified', 'N/A')[:10]}\n\n"
# Description
descriptions = vuln.get('descriptions', [])
for desc in descriptions:
if desc.get('lang') == 'en':
result += f"**πŸ“ Description**:\n{desc.get('value', 'N/A')}\n\n"
break
# CVSS Scores
metrics = vuln.get('metrics', {})
# CVSS v3.x (preferred)
if 'cvssMetricV31' in metrics or 'cvssMetricV30' in metrics:
cvss_key = 'cvssMetricV31' if 'cvssMetricV31' in metrics else 'cvssMetricV30'
cvss_v3 = metrics[cvss_key][0]['cvssData']
result += f"**🎯 CVSS v3 Score**:\n"
result += f"- **Base Score**: {cvss_v3.get('baseScore', 'N/A')} ({cvss_v3.get('baseSeverity', 'N/A')})\n"
result += f"- **Vector String**: {cvss_v3.get('vectorString', 'N/A')}\n"
result += f"- **Attack Vector**: {cvss_v3.get('attackVector', 'N/A')}\n"
result += f"- **Attack Complexity**: {cvss_v3.get('attackComplexity', 'N/A')}\n"
result += f"- **Privileges Required**: {cvss_v3.get('privilegesRequired', 'N/A')}\n"
result += f"- **User Interaction**: {cvss_v3.get('userInteraction', 'N/A')}\n"
result += f"- **Scope**: {cvss_v3.get('scope', 'N/A')}\n"
result += f"- **Confidentiality Impact**: {cvss_v3.get('confidentialityImpact', 'N/A')}\n"
result += f"- **Integrity Impact**: {cvss_v3.get('integrityImpact', 'N/A')}\n"
result += f"- **Availability Impact**: {cvss_v3.get('availabilityImpact', 'N/A')}\n\n"
# CVSS v2 (if available)
if 'cvssMetricV2' in metrics:
cvss_v2 = metrics['cvssMetricV2'][0]['cvssData']
result += f"**CVSS v2 Score**:\n"
result += f"- **Base Score**: {cvss_v2.get('baseScore', 'N/A')} ({metrics['cvssMetricV2'][0].get('baseSeverity', 'N/A')})\n"
result += f"- **Vector String**: {cvss_v2.get('vectorString', 'N/A')}\n\n"
# CWE (Common Weakness Enumeration)
weaknesses = vuln.get('weaknesses', [])
if weaknesses:
result += f"**πŸ” CWE (Common Weakness Enumeration)**:\n"
cwe_list = []
for weakness in weaknesses:
for desc in weakness.get('description', []):
if desc.get('lang') == 'en':
cwe_list.append(desc.get('value', 'N/A'))
result += f"- {', '.join(set(cwe_list))}\n\n"
# References
references = vuln.get('references', [])
if references:
result += f"**πŸ”— References** (showing first 5):\n"
for i, ref in enumerate(references[:5], 1):
result += f"{i}. [{ref.get('source', 'Source')}]({ref.get('url', '#')})\n"
if len(references) > 5:
result += f"\n... and {len(references) - 5} more references\n"
result += "\n"
result += f"---\n"
result += f"πŸ’‘ **Tip**: Use this CVE information to cross-reference vulnerabilities found in code analysis.\n"
return result
elif response.status_code == 404:
return f"⚠️ CVE not found: {cve_id}\n\nπŸ”— **NVD URL**: {nvd_web_url}\n\nThe CVE may not exist or may not yet be published in NVD."
elif response.status_code == 403:
return f"❌ Access denied to NVD API (HTTP 403)\n\nThis might be due to rate limiting. Please try again in a few moments.\n\nπŸ”— **NVD URL**: {nvd_web_url}"
else:
return f"❌ NVD API request failed with status {response.status_code}\n\nπŸ”— **NVD URL**: {nvd_web_url}\n\nYou can view the CVE details directly on the NVD website."
except requests.exceptions.Timeout:
return f"⏱️ Request to NVD API timed out for {cve_id}\n\nPlease try again or visit: {nvd_web_url}"
except requests.exceptions.RequestException as e:
return f"❌ Network error while fetching CVE details: {str(e)}\n\nπŸ”— **NVD URL**: {nvd_web_url}"
except Exception as e:
return f"❌ Unexpected error fetching NVD details for {cve_id}: {str(e)}\n\nπŸ”— **NVD URL**: {nvd_web_url}"
def search_and_fetch_cve_details(self, query: str, max_nvd_fetches: int = 5) -> str:
"""
Smart combined function: Searches CVE database and automatically fetches NVD details.
This function:
1. Searches the CVE knowledge base (RAG) for relevant vulnerabilities
2. Automatically parses CVE IDs from the results
3. Fetches detailed NVD information for top CVEs
4. Returns combined results with both RAG data and NVD details
Args:
query: Vulnerability search query (e.g., "SQL injection", "XSS")
max_nvd_fetches: Maximum number of CVEs to fetch NVD details for (default: 5)
Returns:
Formatted string with RAG results + detailed NVD information
"""
import re
import time
try:
# Step 1: Search CVE database using RAG
print(f"πŸ” Step 1: Searching CVE knowledge base for '{query}'...")
rag_results = self.search_cve_database(query)
if "❌" in rag_results or "No relevant CVE information found" in rag_results:
return rag_results
# Step 2: Parse CVE IDs from RAG results
print(f"πŸ“‹ Step 2: Parsing CVE IDs from results...")
cve_pattern = r'CVE-\d{4}-\d{4,7}'
cve_ids = re.findall(cve_pattern, rag_results)
# Remove duplicates and limit to max_nvd_fetches
unique_cve_ids = list(dict.fromkeys(cve_ids))[:max_nvd_fetches]
if not unique_cve_ids:
return rag_results + "\n\n⚠️ No CVE IDs found in results to fetch NVD details."
print(f"βœ… Found {len(unique_cve_ids)} unique CVE IDs: {', '.join(unique_cve_ids)}")
# Step 3: Build combined result
combined_result = "πŸ”¬ **COMPREHENSIVE CVE ANALYSIS**\n"
combined_result += "=" * 80 + "\n\n"
# Include RAG results first
combined_result += "## πŸ“š PART 1: CVE Knowledge Base Search Results\n\n"
combined_result += rag_results
combined_result += "\n\n" + "=" * 80 + "\n\n"
# Step 4: Fetch NVD details for each CVE
combined_result += f"## 🌐 PART 2: Detailed NVD Information (Top {len(unique_cve_ids)} CVEs)\n\n"
combined_result += f"Fetching official NVD details for: {', '.join(unique_cve_ids)}\n\n"
combined_result += "-" * 80 + "\n\n"
for idx, cve_id in enumerate(unique_cve_ids, 1):
print(f"🌐 Step 3.{idx}: Fetching NVD details for {cve_id}...")
# Fetch NVD details
nvd_result = self.get_nvd_cve_details(cve_id)
combined_result += nvd_result
combined_result += "\n" + "=" * 80 + "\n\n"
# Rate limiting: Add delay between requests (NVD recommends max 5 requests per 30 seconds)
if idx < len(unique_cve_ids):
time.sleep(6) # Wait 6 seconds between requests
# Step 5: Add summary
combined_result += "## πŸ“Š SUMMARY\n\n"
combined_result += f"βœ… **Total CVEs Analyzed**: {len(unique_cve_ids)}\n"
combined_result += f"βœ… **Search Query**: {query}\n"
combined_result += f"βœ… **RAG Results**: {len(cve_ids)} CVE references found\n"
combined_result += f"βœ… **NVD Details Fetched**: {len(unique_cve_ids)} CVEs\n\n"
combined_result += "πŸ’‘ **Next Steps**: Use this information to:\n"
combined_result += "- Cross-reference vulnerabilities in your code\n"
combined_result += "- Understand CVSS severity scores\n"
combined_result += "- Review CWE classifications\n"
combined_result += "- Check official NVD references for remediation guidance\n"
print(f"βœ… Combined analysis complete!")
return combined_result
except Exception as e:
return f"❌ Error in combined CVE analysis: {str(e)}\n\nPlease try using search_cve_database and get_nvd_cve_details separately."
# Initialize the GitHub MCP server
github_server = GitHubMCPServer()
# Create Gradio interfaces for MCP
demo = gr.TabbedInterface(
[
gr.Interface(
fn=github_server.get_repository_info,
inputs=[
gr.Textbox(label="Repository Owner", placeholder="octocat"),
gr.Textbox(label="Repository Name", placeholder="Hello-World")
],
outputs=gr.Textbox(label="Repository Information", lines=15),
title="Get Repository Information",
description="Get basic information about a GitHub repository",
api_name="get_repository_info"
),
gr.Interface(
fn=github_server.get_file_content,
inputs=[
gr.Textbox(label="Repository Owner", placeholder="octocat"),
gr.Textbox(label="Repository Name", placeholder="Hello-World"),
gr.Textbox(label="File Path", placeholder="README.md")
],
outputs=gr.Textbox(label="File Content", lines=20),
title="Get File Content",
description="Get the content of a specific file from a GitHub repository",
api_name="get_file_content"
),
gr.Interface(
fn=github_server.scan_repository,
inputs=[
gr.Textbox(label="Repository Owner", placeholder="octocat"),
gr.Textbox(label="Repository Name", placeholder="Hello-World"),
gr.Textbox(label="File Extensions", value=".py,.js,.ts,.php,.java", placeholder=".py,.js,.ts,.php,.java")
],
outputs=gr.Textbox(label="Scan Results", lines=20),
title="Scan Repository for Code Files",
description="Scan a GitHub repository for code files with specified extensions",
api_name="scan_repository"
),
gr.Interface(
fn=github_server.search_cve_database,
inputs=[
gr.Textbox(label="Vulnerability Query", placeholder="SQL injection, XSS, command injection, etc.")
],
outputs=gr.Textbox(label="CVE Search Results", lines=25),
title="Search CVE Database",
description="Search the CVE knowledge base for vulnerability patterns and CWE information",
api_name="search_cve_database"
),
gr.Interface(
fn=github_server.get_nvd_cve_details,
inputs=[
gr.Textbox(label="CVE ID", placeholder="CVE-2019-16515", value="CVE-2019-16515")
],
outputs=gr.Textbox(label="NVD CVE Details", lines=30),
title="Get NVD CVE Details",
description="Fetch detailed CVE information from National Vulnerability Database (NVD)",
api_name="get_nvd_cve_details"
),
gr.Interface(
fn=github_server.search_and_fetch_cve_details,
inputs=[
gr.Textbox(label="Vulnerability Query", placeholder="SQL injection, XSS, command injection, etc.", value="SQL injection"),
gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Max NVD Fetches", info="Number of CVEs to fetch NVD details for")
],
outputs=gr.Textbox(label="Comprehensive CVE Analysis", lines=40),
title="πŸ”¬ Smart CVE Analysis (RAG + NVD)",
description="Automatically searches CVE database AND fetches detailed NVD information for top CVEs",
api_name="search_and_fetch_cve_details"
),
gr.Interface(
fn=github_server.simple_cve_search,
inputs=[
gr.Textbox(label="Vulnerability Query", placeholder="SQL injection, XSS, command injection, etc."),
gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of Results", info="Number of CVE matches to return")
],
outputs=gr.Textbox(label="Simple CVE Search Results", lines=15),
title="πŸ” Simple CVE Search",
description="Simple CVE search returning only CVE IDs and descriptions (for multi-agent workflow)",
api_name="simple_cve_search"
)
],
[
"Repository Info",
"File Content",
"Repository Scanner",
"CVE Database",
"NVD CVE Details",
"πŸ”¬ Smart CVE Analysis",
"πŸ” Simple CVE Search"
],
title="πŸ™ GitHub MCP Server with CVE Knowledge Base & NVD Integration"
)
if __name__ == "__main__":
print("πŸš€ Starting GitHub MCP Server with CVE Knowledge Base & NVD Integration...")
print("πŸ“‘ Server will provide GitHub repository access, CVE search, and NVD details via MCP")
print("πŸ› οΈ Available tools:")
print(" - get_repository_info: Get repository metadata")
print(" - get_file_content: Retrieve file contents")
print(" - scan_repository: Scan for code files")
print(" - search_cve_database: Search CVE knowledge base")
print(" - get_nvd_cve_details: Fetch detailed CVE info from NVD")
print(" - πŸ†• search_and_fetch_cve_details: Smart combined RAG + NVD analysis")
demo.launch(mcp_server=True)