Spaces:
Sleeping
Sleeping
import os | |
from typing import Union | |
import cv2 | |
import numpy as np | |
import torch | |
from diffusers.image_processor import VaeImageProcessor | |
from PIL import Image | |
from SCHP import SCHP # type: ignore | |
from utils.densepose_for_mask import DensePose # type: ignore | |
DENSE_INDEX_MAP = { | |
"background": [0], | |
"torso": [1, 2], | |
"right hand": [3], | |
"left hand": [4], | |
"right foot": [5], | |
"left foot": [6], | |
"right thigh": [7, 9], | |
"left thigh": [8, 10], | |
"right leg": [11, 13], | |
"left leg": [12, 14], | |
"left big arm": [15, 17], | |
"right big arm": [16, 18], | |
"left forearm": [19, 21], | |
"right forearm": [20, 22], | |
"face": [23, 24], | |
"thighs": [7, 8, 9, 10], | |
"legs": [11, 12, 13, 14], | |
"hands": [3, 4], | |
"feet": [5, 6], | |
"big arms": [15, 16, 17, 18], | |
"forearms": [19, 20, 21, 22], | |
} | |
ATR_MAPPING = { | |
"Background": 0, | |
"Hat": 1, | |
"Hair": 2, | |
"Sunglasses": 3, | |
"Upper-clothes": 4, | |
"Skirt": 5, | |
"Pants": 6, | |
"Dress": 7, | |
"Belt": 8, | |
"Left-shoe": 9, | |
"Right-shoe": 10, | |
"Face": 11, | |
"Left-leg": 12, | |
"Right-leg": 13, | |
"Left-arm": 14, | |
"Right-arm": 15, | |
"Bag": 16, | |
"Scarf": 17, | |
} | |
LIP_MAPPING = { | |
"Background": 0, | |
"Hat": 1, | |
"Hair": 2, | |
"Glove": 3, | |
"Sunglasses": 4, | |
"Upper-clothes": 5, | |
"Dress": 6, | |
"Coat": 7, | |
"Socks": 8, | |
"Pants": 9, | |
"Jumpsuits": 10, | |
"Scarf": 11, | |
"Skirt": 12, | |
"Face": 13, | |
"Left-arm": 14, | |
"Right-arm": 15, | |
"Left-leg": 16, | |
"Right-leg": 17, | |
"Left-shoe": 18, | |
"Right-shoe": 19, | |
} | |
PROTECT_BODY_PARTS = { | |
"upper": ["Left-leg", "Right-leg"], | |
"lower": ["Right-arm", "Left-arm", "Face"], | |
"overall": [], | |
"inner": ["Left-leg", "Right-leg"], | |
"outer": ["Left-leg", "Right-leg"], | |
} | |
PROTECT_CLOTH_PARTS = { | |
"upper": {"ATR": ["Skirt", "Pants"], "LIP": ["Skirt", "Pants"]}, | |
"lower": {"ATR": ["Upper-clothes"], "LIP": ["Upper-clothes", "Coat"]}, | |
"overall": {"ATR": [], "LIP": []}, | |
"inner": { | |
"ATR": ["Dress", "Coat", "Skirt", "Pants"], | |
"LIP": ["Dress", "Coat", "Skirt", "Pants", "Jumpsuits"], | |
}, | |
"outer": { | |
"ATR": ["Dress", "Pants", "Skirt"], | |
"LIP": ["Upper-clothes", "Dress", "Pants", "Skirt", "Jumpsuits"], | |
}, | |
} | |
MASK_CLOTH_PARTS = { | |
"upper": ["Upper-clothes", "Coat", "Dress", "Jumpsuits"], | |
"lower": ["Pants", "Skirt", "Dress", "Jumpsuits"], | |
"overall": ["Upper-clothes", "Dress", "Pants", "Skirt", "Coat", "Jumpsuits"], | |
"inner": ["Upper-clothes"], | |
"outer": [ | |
"Coat", | |
], | |
} | |
MASK_DENSE_PARTS = { | |
"upper": ["torso", "big arms", "forearms"], | |
"lower": ["thighs", "legs"], | |
"overall": ["torso", "thighs", "legs", "big arms", "forearms"], | |
"inner": ["torso"], | |
"outer": ["torso", "big arms", "forearms"], | |
} | |
schp_public_protect_parts = [ | |
"Hat", | |
"Hair", | |
"Sunglasses", | |
"Left-shoe", | |
"Right-shoe", | |
"Bag", | |
"Glove", | |
"Scarf", | |
] | |
schp_protect_parts = { | |
"upper": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits"], | |
"lower": ["Left-arm", "Right-arm", "Upper-clothes", "Coat"], | |
"overall": [], | |
"inner": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Coat"], | |
"outer": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Upper-clothes"], | |
} | |
schp_mask_parts = { | |
"upper": ["Upper-clothes", "Dress", "Coat", "Jumpsuits"], | |
"lower": ["Pants", "Skirt", "Dress", "Jumpsuits", "socks"], | |
"overall": [ | |
"Upper-clothes", | |
"Dress", | |
"Pants", | |
"Skirt", | |
"Coat", | |
"Jumpsuits", | |
"socks", | |
], | |
"inner": ["Upper-clothes"], | |
"outer": [ | |
"Coat", | |
], | |
} | |
dense_mask_parts = { | |
"upper": ["torso", "big arms", "forearms"], | |
"lower": ["thighs", "legs"], | |
"overall": ["torso", "thighs", "legs", "big arms", "forearms"], | |
"inner": ["torso"], | |
"outer": ["torso", "big arms", "forearms"], | |
} | |
def vis_mask(image, mask): | |
image = np.array(image).astype(np.uint8) | |
mask = np.array(mask).astype(np.uint8) | |
mask[mask > 127] = 255 | |
mask[mask <= 127] = 0 | |
mask = np.expand_dims(mask, axis=-1) | |
mask = np.repeat(mask, 3, axis=-1) | |
mask = mask / 255 | |
return Image.fromarray((image * (1 - mask)).astype(np.uint8)) | |
def part_mask_of(part: Union[str, list], parse: np.ndarray, mapping: dict): | |
if isinstance(part, str): | |
part = [part] | |
mask = np.zeros_like(parse) | |
for _ in part: | |
if _ not in mapping: | |
continue | |
if isinstance(mapping[_], list): | |
for i in mapping[_]: | |
mask += parse == i | |
else: | |
mask += parse == mapping[_] | |
return mask | |
def hull_mask(mask_area: np.ndarray): | |
ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY) | |
contours, hierarchy = cv2.findContours( | |
binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE | |
) | |
hull_mask = np.zeros_like(mask_area) | |
for c in contours: | |
hull = cv2.convexHull(c) | |
hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask | |
return hull_mask | |
class AutoMasker: | |
def __init__( | |
self, | |
densepose_path: str = "./ckpts/densepose", | |
schp_path: str = "./ckpts/schp", | |
device="cuda", | |
): | |
np.random.seed(0) | |
torch.manual_seed(0) | |
torch.cuda.manual_seed(0) | |
self.densepose_processor = DensePose(densepose_path, device) | |
self.schp_processor_atr = SCHP( | |
ckpt_path=os.path.join(schp_path, "exp-schp-201908301523-atr.pth"), | |
device=device, | |
) | |
self.schp_processor_lip = SCHP( | |
ckpt_path=os.path.join(schp_path, "exp-schp-201908261155-lip.pth"), | |
device=device, | |
) | |
self.mask_processor = VaeImageProcessor( | |
vae_scale_factor=8, | |
do_normalize=False, | |
do_binarize=True, | |
do_convert_grayscale=True, | |
) | |
def process_densepose(self, image_or_path): | |
return self.densepose_processor(image_or_path, resize=1024) | |
def process_schp_lip(self, image_or_path): | |
return self.schp_processor_lip(image_or_path) | |
def process_schp_atr(self, image_or_path): | |
return self.schp_processor_atr(image_or_path) | |
def preprocess_image(self, image_or_path): | |
return { | |
"densepose": self.densepose_processor(image_or_path, resize=1024), | |
"schp_atr": self.schp_processor_atr(image_or_path), | |
"schp_lip": self.schp_processor_lip(image_or_path), | |
} | |
def cloth_agnostic_mask( | |
densepose_mask: Image.Image, | |
schp_lip_mask: Image.Image, | |
schp_atr_mask: Image.Image, | |
part: str = "overall", | |
**kwargs, | |
): | |
assert part in [ | |
"upper", | |
"lower", | |
"overall", | |
"inner", | |
"outer", | |
], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}" | |
w, h = densepose_mask.size | |
dilate_kernel = max(w, h) // 250 | |
dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1 | |
dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8) | |
kernal_size = max(w, h) // 25 | |
kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1 | |
densepose_mask = np.array(densepose_mask) | |
schp_lip_mask = np.array(schp_lip_mask) | |
schp_atr_mask = np.array(schp_atr_mask) | |
# Strong Protect Area (Hands, Face, Accessory, Feet) | |
hands_protect_area = part_mask_of( | |
["hands", "feet"], densepose_mask, DENSE_INDEX_MAP | |
) | |
hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1) | |
hands_protect_area = hands_protect_area & ( | |
part_mask_of( | |
["Left-arm", "Right-arm", "Left-leg", "Right-leg"], | |
schp_atr_mask, | |
ATR_MAPPING, | |
) | |
| part_mask_of( | |
["Left-arm", "Right-arm", "Left-leg", "Right-leg"], | |
schp_lip_mask, | |
LIP_MAPPING, | |
) | |
) | |
face_protect_area = part_mask_of("Face", schp_lip_mask, LIP_MAPPING) | |
strong_protect_area = hands_protect_area | face_protect_area | |
# Weak Protect Area (Hair, Irrelevant Clothes, Body Parts) | |
body_protect_area = part_mask_of( | |
PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING | |
) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING) | |
hair_protect_area = part_mask_of( | |
["Hair"], schp_lip_mask, LIP_MAPPING | |
) | part_mask_of(["Hair"], schp_atr_mask, ATR_MAPPING) | |
cloth_protect_area = part_mask_of( | |
PROTECT_CLOTH_PARTS[part]["LIP"], schp_lip_mask, LIP_MAPPING | |
) | part_mask_of(PROTECT_CLOTH_PARTS[part]["ATR"], schp_atr_mask, ATR_MAPPING) | |
accessory_protect_area = part_mask_of( | |
( | |
accessory_parts := [ | |
"Hat", | |
"Glove", | |
"Sunglasses", | |
"Bag", | |
"Left-shoe", | |
"Right-shoe", | |
"Scarf", | |
"Socks", | |
] | |
), | |
schp_lip_mask, | |
LIP_MAPPING, | |
) | part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING) | |
weak_protect_area = ( | |
body_protect_area | |
| cloth_protect_area | |
| hair_protect_area | |
| strong_protect_area | |
| accessory_protect_area | |
) | |
# Mask Area | |
strong_mask_area = part_mask_of( | |
MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING | |
) | part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING) | |
background_area = part_mask_of( | |
["Background"], schp_lip_mask, LIP_MAPPING | |
) & part_mask_of(["Background"], schp_atr_mask, ATR_MAPPING) | |
mask_dense_area = part_mask_of( | |
MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP | |
) | |
mask_dense_area = cv2.resize( | |
mask_dense_area.astype(np.uint8), | |
None, | |
fx=0.25, | |
fy=0.25, | |
interpolation=cv2.INTER_NEAREST, | |
) | |
mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2) | |
mask_dense_area = cv2.resize( | |
mask_dense_area.astype(np.uint8), | |
None, | |
fx=4, | |
fy=4, | |
interpolation=cv2.INTER_NEAREST, | |
) | |
mask_area = ( | |
np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area) | |
) | mask_dense_area | |
mask_area = ( | |
hull_mask(mask_area * 255) // 255 | |
) # Convex Hull to expand the mask area | |
mask_area = mask_area & (~weak_protect_area) | |
mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0) | |
mask_area[mask_area < 25] = 0 | |
mask_area[mask_area >= 25] = 1 | |
mask_area = (mask_area | strong_mask_area) & (~strong_protect_area) | |
mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1) | |
return Image.fromarray(mask_area * 255) | |
def __call__( | |
self, | |
image: Union[str, Image.Image], | |
mask_type: str = "upper", | |
): | |
assert mask_type in [ | |
"upper", | |
"lower", | |
"overall", | |
"inner", | |
"outer", | |
], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}" | |
preprocess_results = self.preprocess_image(image) | |
mask = self.cloth_agnostic_mask( | |
preprocess_results["densepose"], | |
preprocess_results["schp_lip"], | |
preprocess_results["schp_atr"], | |
part=mask_type, | |
) | |
return { | |
"mask": mask, | |
"densepose": preprocess_results["densepose"], | |
"schp_lip": preprocess_results["schp_lip"], | |
"schp_atr": preprocess_results["schp_atr"], | |
} | |
if __name__ == "__main__": | |
import os | |
import sys | |
from PIL import Image | |
automasker = AutoMasker() | |
image_path = sys.argv[1] | |
image = Image.open(image_path).convert("RGB") | |
outputs = automasker( | |
image, | |
"upper", | |
# "lower", | |
) | |
mask = outputs["mask"] | |
# densepose = outputs["densepose"] # densepose I map, range 0~24 | |
# schp_lip = outputs["schp_lip"] | |
# schp_atr = outputs["schp_atr"] | |
mask.save(".".join(image_path.split(".")[:-1]) + "_mask.jpg") | |