fix readme
Browse files
README.md
CHANGED
@@ -1,124 +1,11 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
Using a short finetuning process with only 3 labeled examples from 500 classes, our method imrpoves robustness of ViT models across different model sizes and training techniques, even when data augmentations/ regularization are applied.
|
13 |
-
|
14 |
-
## Producing Segmenataion Data
|
15 |
-
### Using ImageNet-S
|
16 |
-
To use the ImageNet-S labeled data, [download the `ImageNetS919` dataset](https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S)
|
17 |
-
|
18 |
-
### Using TokenCut for unsupervised segmentation
|
19 |
-
1. Clone the TokenCut project
|
20 |
-
```
|
21 |
-
git clone https://github.com/YangtaoWANG95/TokenCut.git
|
22 |
-
```
|
23 |
-
2. Install the dependencies
|
24 |
-
Python 3.7, PyTorch 1.7.1 and CUDA 11.2. Please refer to the official installation. If CUDA 10.2 has been properly installed:
|
25 |
-
```
|
26 |
-
pip install torch==1.7.1 torchvision==0.8.2
|
27 |
-
```
|
28 |
-
Followed by
|
29 |
-
```
|
30 |
-
pip install -r TokenCut/requirements.txt
|
31 |
-
|
32 |
-
3. Use the following command to extract the segmentation maps:
|
33 |
-
```
|
34 |
-
python tokencut_generate_segmentation.py --img_path <PATH_TO_IMAGE> --out_dir <PATH_TO_OUTPUT_DIRECTORY>
|
35 |
-
```
|
36 |
-
|
37 |
-
|
38 |
-
## Finetuning ViT models
|
39 |
-
|
40 |
-
To finetune a pretrained ViT model use the `imagenet_finetune.py` script. Notice to uncomment the import line containing the pretrained model you
|
41 |
-
wish to finetune.
|
42 |
-
|
43 |
-
Usage example:
|
44 |
-
|
45 |
-
```bash
|
46 |
-
python imagenet_finetune.py --seg_data <PATH_TO_SEGMENTATION_DATA> --data <PATH_TO_IMAGENET> --gpu 0 --lr <LR> --lambda_seg <SEG> --lambda_acc <ACC> --lambda_background <BACK> --lambda_foreground <FORE>
|
47 |
-
```
|
48 |
-
|
49 |
-
Notes:
|
50 |
-
|
51 |
-
* For all models we use :
|
52 |
-
* `lambda_seg=0.8`
|
53 |
-
* `lambda_acc=0.2`
|
54 |
-
* `lambda_background=2`
|
55 |
-
* `lambda_foreground=0.3`
|
56 |
-
* For **DeiT** models, a temprature is required as follows:
|
57 |
-
* `temprature=0.65` for DeiT-B
|
58 |
-
* `temprature=0.55` for DeiT-S
|
59 |
-
* The learning rates per model are:
|
60 |
-
* ViT-B: 3e-6
|
61 |
-
* ViT-L: 9e-7
|
62 |
-
* AR-S: 2e-6
|
63 |
-
* AR-B: 6e-7
|
64 |
-
* AR-L: 9e-7
|
65 |
-
* DeiT-S: 1e-6
|
66 |
-
* DeiT-B: 8e-7
|
67 |
-
|
68 |
-
## Baseline methods
|
69 |
-
Notice to uncomment the import line containing the pretrained model you wish to finetune in the code.
|
70 |
-
|
71 |
-
### GradMask
|
72 |
-
Run the following command:
|
73 |
-
```bash
|
74 |
-
python imagenet_finetune_gradmask.py --seg_data <PATH_TO_SEGMENTATION_DATA> --data <PATH_TO_IMAGENET> --gpu 0 --lr <LR> --lambda_seg <SEG> --lambda_acc <ACC>
|
75 |
-
```
|
76 |
-
All hyperparameters for the different models can be found in section D of the supplementary material.
|
77 |
-
|
78 |
-
### Right for the Right Reasons
|
79 |
-
Run the following command:
|
80 |
-
```bash
|
81 |
-
python imagenet_finetune_rrr.py --seg_data <PATH_TO_SEGMENTATION_DATA> --data <PATH_TO_IMAGENET> --gpu 0 --lr <LR> --lambda_seg <SEG> --lambda_acc <ACC>
|
82 |
-
```
|
83 |
-
All hyperparameters for the different models can be found in section D of the supplementary material.
|
84 |
-
|
85 |
-
## Evaluation
|
86 |
-
|
87 |
-
### Robustness Evaluation
|
88 |
-
|
89 |
-
1. Download the evaluation datasets:
|
90 |
-
* [INet-A](https://github.com/hendrycks/natural-adv-examples)
|
91 |
-
* [INet-R](https://github.com/hendrycks/imagenet-r)
|
92 |
-
* [INet-v2](https://github.com/modestyachts/ImageNetV2)
|
93 |
-
* [ObjectNet](https://objectnet.dev/)
|
94 |
-
* [SI-Score](https://github.com/google-research/si-score)
|
95 |
-
|
96 |
-
2. Run the following script to evaluate:
|
97 |
-
|
98 |
-
```bash
|
99 |
-
python imagenet_eval_robustness.py --data <PATH_TO_ROBUSTNESS_DATASET> --batch-size <BATCH_SIZE> --evaluate --checkpoint <PATH_TO_FINETUNED_CHECKPOINT>
|
100 |
-
```
|
101 |
-
* Notice to uncomment the import line containing the pretrained model you wish to evaluate in the code.
|
102 |
-
* To evaluate the original model simply omit the `checkpoint` parameter.
|
103 |
-
* For the INet-v2 dataset add `--isV2`.
|
104 |
-
* For the ObjectNet dataset add `--isObjectNet`.
|
105 |
-
* For the SI datasets add `--isSI`.
|
106 |
-
|
107 |
-
### Segmentation Evaluation
|
108 |
-
Our segmentation tests are based on the test in the official implementation of [Transformer Interpretability Beyond Attention Visualization](https://github.com/hila-chefer/Transformer-Explainability).
|
109 |
-
1. [Download the ImageNet segmentation test set](https://github.com/hila-chefer/Transformer-Explainability#section-a-segmentation-results).
|
110 |
-
2. Run the following script to evaluate:
|
111 |
-
|
112 |
-
```bash
|
113 |
-
PYTHONPATH=./:$PYTHONPATH python SegmentationTest/imagenet_seg_eval.py --imagenet-seg-path <PATH_TO_gtsegs_ijcv.mat>
|
114 |
-
```
|
115 |
-
* Notice to uncomment the import line containing the pretrained model you wish to evaluate in the code.
|
116 |
-
|
117 |
-
### Credits
|
118 |
-
* The TokenCut code is built on top of [LOST](https://github.com/valeoai/LOST), [DINO](https://github.com/facebookresearch/dino), [Segswap](https://github.com/XiSHEN0220/SegSwap), and [Bilateral_Sovlver](https://github.com/poolio/bilateral_solver).
|
119 |
-
* Our ViT code is based on the [pytorch-image-models](https://github.com/rwightman/pytorch-image-models) repository.
|
120 |
-
* Our ImageNet finetuning code is based on [code from the official PyTorch repo](https://github.com/pytorch/examples/blob/main/imagenet/main.py).
|
121 |
-
* The code to convert ObjectNet classes to ImageNet classes was taken from [the torchprune repo](https://github.com/lucaslie/torchprune/blob/b753745b773c3ed259bf819d193ce8573d89efbb/src/torchprune/torchprune/util/datasets/objectnet.py).
|
122 |
-
* The code to convert SI-Score classes to ImageNet classes was taken from [the official implementation](https://github.com/google-research/si-score).
|
123 |
-
|
124 |
-
We would like to sincerely thank the authors for their great works.
|
|
|
1 |
+
---
|
2 |
+
title: RobustViT
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.0.11
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|