|
import argparse |
|
import os |
|
import random |
|
import shutil |
|
import time |
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.parallel |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed as dist |
|
import torch.optim |
|
import torch.multiprocessing as mp |
|
import torch.utils.data |
|
import torch.utils.data.distributed |
|
import torchvision.transforms as transforms |
|
import torchvision.datasets as datasets |
|
import torchvision.models as models |
|
from segmentation_dataset import SegmentationDataset, VAL_PARTITION, TRAIN_PARTITION |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
from ViT.ViT import vit_base_patch16_224 as vit |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from ViT.explainer import generate_relevance, get_image_with_relevance |
|
import torchvision |
|
import cv2 |
|
from torch.utils.tensorboard import SummaryWriter |
|
import json |
|
|
|
model_names = sorted(name for name in models.__dict__ |
|
if name.islower() and not name.startswith("__") |
|
and callable(models.__dict__[name])) |
|
model_names.append("vit") |
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') |
|
parser.add_argument('--data', metavar='DATA', |
|
help='path to dataset') |
|
parser.add_argument('--seg_data', metavar='SEG_DATA', |
|
help='path to segmentation dataset') |
|
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', |
|
help='number of data loading workers (default: 4)') |
|
parser.add_argument('--epochs', default=50, type=int, metavar='N', |
|
help='number of total epochs to run') |
|
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', |
|
help='manual epoch number (useful on restarts)') |
|
parser.add_argument('-b', '--batch-size', default=8, type=int, |
|
metavar='N', |
|
help='mini-batch size (default: 256), this is the total ' |
|
'batch size of all GPUs on the current node when ' |
|
'using Data Parallel or Distributed Data Parallel') |
|
parser.add_argument('--lr', '--learning-rate', default=3e-6, type=float, |
|
metavar='LR', help='initial learning rate', dest='lr') |
|
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', |
|
help='momentum') |
|
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, |
|
metavar='W', help='weight decay (default: 1e-4)', |
|
dest='weight_decay') |
|
parser.add_argument('-p', '--print-freq', default=10, type=int, |
|
metavar='N', help='print frequency (default: 10)') |
|
parser.add_argument('--resume', default='', type=str, metavar='PATH', |
|
help='path to latest checkpoint (default: none)') |
|
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', |
|
help='evaluate model on validation set') |
|
parser.add_argument('--pretrained', dest='pretrained', action='store_true', |
|
help='use pre-trained model') |
|
parser.add_argument('--world-size', default=-1, type=int, |
|
help='number of nodes for distributed training') |
|
parser.add_argument('--rank', default=-1, type=int, |
|
help='node rank for distributed training') |
|
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, |
|
help='url used to set up distributed training') |
|
parser.add_argument('--dist-backend', default='nccl', type=str, |
|
help='distributed backend') |
|
parser.add_argument('--seed', default=None, type=int, |
|
help='seed for initializing training. ') |
|
parser.add_argument('--gpu', default=None, type=int, |
|
help='GPU id to use.') |
|
parser.add_argument('--save_interval', default=20, type=int, |
|
help='interval to save segmentation results.') |
|
parser.add_argument('--num_samples', default=3, type=int, |
|
help='number of samples per class for training') |
|
parser.add_argument('--multiprocessing-distributed', action='store_true', |
|
help='Use multi-processing distributed training to launch ' |
|
'N processes per node, which has N GPUs. This is the ' |
|
'fastest way to use PyTorch for either single node or ' |
|
'multi node data parallel training') |
|
parser.add_argument('--lambda_seg', default=0.8, type=float, |
|
help='influence of segmentation loss.') |
|
parser.add_argument('--lambda_acc', default=0.2, type=float, |
|
help='influence of accuracy loss.') |
|
parser.add_argument('--experiment_folder', default=None, type=str, |
|
help='path to folder to use for experiment.') |
|
parser.add_argument('--num_classes', default=500, type=int, |
|
help='coefficient of loss for segmentation foreground.') |
|
parser.add_argument('--temperature', default=1, type=float, |
|
help='temperature for softmax (mostly for DeiT).') |
|
|
|
best_loss = float('inf') |
|
|
|
def main(): |
|
args = parser.parse_args() |
|
|
|
if args.experiment_folder is None: |
|
args.experiment_folder = f'experiment/' \ |
|
f'lr_{args.lr}_seg_{args.lambda_seg}_acc_{args.lambda_acc}' |
|
if args.temperature != 1: |
|
args.experiment_folder = args.experiment_folder + f'_tempera_{args.temperature}' |
|
if args.batch_size != 10: |
|
args.experiment_folder = args.experiment_folder + f'_bs_{args.batch_size}' |
|
if args.num_classes != 500: |
|
args.experiment_folder = args.experiment_folder + f'_num_classes_{args.num_classes}' |
|
if args.num_samples != 3: |
|
args.experiment_folder = args.experiment_folder + f'_num_samples_{args.num_samples}' |
|
if args.epochs != 150: |
|
args.experiment_folder = args.experiment_folder + f'_num_epochs_{args.epochs}' |
|
|
|
if os.path.exists(args.experiment_folder): |
|
raise Exception(f"Experiment path {args.experiment_folder} already exists!") |
|
os.mkdir(args.experiment_folder) |
|
os.mkdir(f'{args.experiment_folder}/train_samples') |
|
os.mkdir(f'{args.experiment_folder}/val_samples') |
|
|
|
with open(f'{args.experiment_folder}/commandline_args.txt', 'w') as f: |
|
json.dump(args.__dict__, f, indent=2) |
|
|
|
if args.seed is not None: |
|
random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
cudnn.deterministic = True |
|
warnings.warn('You have chosen to seed training. ' |
|
'This will turn on the CUDNN deterministic setting, ' |
|
'which can slow down your training considerably! ' |
|
'You may see unexpected behavior when restarting ' |
|
'from checkpoints.') |
|
|
|
if args.gpu is not None: |
|
warnings.warn('You have chosen a specific GPU. This will completely ' |
|
'disable data parallelism.') |
|
|
|
if args.dist_url == "env://" and args.world_size == -1: |
|
args.world_size = int(os.environ["WORLD_SIZE"]) |
|
|
|
args.distributed = args.world_size > 1 or args.multiprocessing_distributed |
|
|
|
ngpus_per_node = torch.cuda.device_count() |
|
if args.multiprocessing_distributed: |
|
|
|
|
|
args.world_size = ngpus_per_node * args.world_size |
|
|
|
|
|
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) |
|
else: |
|
|
|
main_worker(args.gpu, ngpus_per_node, args) |
|
|
|
|
|
def main_worker(gpu, ngpus_per_node, args): |
|
global best_loss |
|
args.gpu = gpu |
|
|
|
if args.gpu is not None: |
|
print("Use GPU: {} for training".format(args.gpu)) |
|
|
|
if args.distributed: |
|
if args.dist_url == "env://" and args.rank == -1: |
|
args.rank = int(os.environ["RANK"]) |
|
if args.multiprocessing_distributed: |
|
|
|
|
|
args.rank = args.rank * ngpus_per_node + gpu |
|
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
|
|
print("=> creating model") |
|
model = vit(pretrained=True).cuda() |
|
model.train() |
|
print("done") |
|
|
|
if not torch.cuda.is_available(): |
|
print('using CPU, this will be slow') |
|
elif args.distributed: |
|
|
|
|
|
|
|
if args.gpu is not None: |
|
torch.cuda.set_device(args.gpu) |
|
model.cuda(args.gpu) |
|
|
|
|
|
|
|
args.batch_size = int(args.batch_size / ngpus_per_node) |
|
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) |
|
else: |
|
model.cuda() |
|
|
|
|
|
model = torch.nn.parallel.DistributedDataParallel(model) |
|
elif args.gpu is not None: |
|
torch.cuda.set_device(args.gpu) |
|
model = model.cuda(args.gpu) |
|
else: |
|
|
|
print("start") |
|
model = torch.nn.DataParallel(model).cuda() |
|
|
|
|
|
criterion = nn.CrossEntropyLoss().cuda(args.gpu) |
|
optimizer = torch.optim.AdamW(model.parameters(), args.lr, weight_decay=args.weight_decay) |
|
|
|
|
|
if args.resume: |
|
if os.path.isfile(args.resume): |
|
print("=> loading checkpoint '{}'".format(args.resume)) |
|
if args.gpu is None: |
|
checkpoint = torch.load(args.resume) |
|
else: |
|
|
|
loc = 'cuda:{}'.format(args.gpu) |
|
checkpoint = torch.load(args.resume, map_location=loc) |
|
args.start_epoch = checkpoint['epoch'] |
|
best_loss = checkpoint['best_loss'] |
|
if args.gpu is not None: |
|
|
|
best_loss = best_loss.to(args.gpu) |
|
model.load_state_dict(checkpoint['state_dict']) |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
print("=> loaded checkpoint '{}' (epoch {})" |
|
.format(args.resume, checkpoint['epoch'])) |
|
else: |
|
print("=> no checkpoint found at '{}'".format(args.resume)) |
|
|
|
cudnn.benchmark = True |
|
|
|
train_dataset = SegmentationDataset(args.seg_data, args.data, partition=TRAIN_PARTITION, train_classes=args.num_classes, |
|
num_samples=args.num_samples) |
|
|
|
if args.distributed: |
|
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) |
|
else: |
|
train_sampler = None |
|
|
|
train_loader = torch.utils.data.DataLoader( |
|
train_dataset, batch_size=args.batch_size, shuffle=False, |
|
num_workers=args.workers, pin_memory=True, sampler=train_sampler) |
|
|
|
val_dataset = SegmentationDataset(args.seg_data, args.data, partition=VAL_PARTITION, train_classes=args.num_classes, |
|
num_samples=1) |
|
|
|
val_loader = torch.utils.data.DataLoader( |
|
val_dataset, batch_size=5, shuffle=False, |
|
num_workers=args.workers, pin_memory=True) |
|
|
|
if args.evaluate: |
|
validate(val_loader, model, criterion, 0, args) |
|
return |
|
|
|
for epoch in range(args.start_epoch, args.epochs): |
|
if args.distributed: |
|
train_sampler.set_epoch(epoch) |
|
adjust_learning_rate(optimizer, epoch, args) |
|
|
|
log_dir = os.path.join(args.experiment_folder, 'logs') |
|
logger = SummaryWriter(log_dir=log_dir) |
|
args.logger = logger |
|
|
|
|
|
train(train_loader, model, criterion, optimizer, epoch, args) |
|
|
|
|
|
loss1 = validate(val_loader, model, criterion, epoch, args) |
|
|
|
|
|
is_best = loss1 < best_loss |
|
best_loss = min(loss1, best_loss) |
|
|
|
if not args.multiprocessing_distributed or (args.multiprocessing_distributed |
|
and args.rank % ngpus_per_node == 0): |
|
save_checkpoint({ |
|
'epoch': epoch + 1, |
|
'state_dict': model.state_dict(), |
|
'best_loss': best_loss, |
|
'optimizer' : optimizer.state_dict(), |
|
}, is_best, folder=args.experiment_folder) |
|
|
|
def train(train_loader, model, criterion, optimizer, epoch, args): |
|
mse_criterion = torch.nn.MSELoss(reduction='mean') |
|
|
|
losses = AverageMeter('Loss', ':.4e') |
|
top1 = AverageMeter('Acc@1', ':6.2f') |
|
top5 = AverageMeter('Acc@5', ':6.2f') |
|
orig_top1 = AverageMeter('Acc@1_orig', ':6.2f') |
|
orig_top5 = AverageMeter('Acc@5_orig', ':6.2f') |
|
progress = ProgressMeter( |
|
len(train_loader), |
|
[losses, top1, top5, orig_top1, orig_top5], |
|
prefix="Epoch: [{}]".format(epoch)) |
|
|
|
orig_model = vit(pretrained=True).cuda() |
|
orig_model.eval() |
|
|
|
|
|
model.train() |
|
|
|
for i, (seg_map, image_ten, class_name) in enumerate(train_loader): |
|
if torch.cuda.is_available(): |
|
image_ten = image_ten.cuda(args.gpu, non_blocking=True) |
|
seg_map = seg_map.cuda(args.gpu, non_blocking=True) |
|
class_name = class_name.cuda(args.gpu, non_blocking=True) |
|
|
|
|
|
image_ten.requires_grad = True |
|
output = model(image_ten) |
|
|
|
|
|
batch_size = image_ten.shape[0] |
|
index = class_name |
|
if index == None: |
|
index = np.argmax(output.cpu().data.numpy(), axis=-1) |
|
index = torch.tensor(index) |
|
|
|
one_hot = np.zeros((batch_size, output.shape[-1]), dtype=np.float32) |
|
one_hot[torch.arange(batch_size), index.data.cpu().numpy()] = 1 |
|
one_hot = torch.from_numpy(one_hot).requires_grad_(True) |
|
one_hot = torch.sum(one_hot.to(image_ten.device) * output) |
|
model.zero_grad() |
|
|
|
relevance = torch.autograd.grad(one_hot, image_ten, retain_graph=True)[0] |
|
|
|
reverse_seg_map = seg_map.clone() |
|
reverse_seg_map[reverse_seg_map == 1] = -1 |
|
reverse_seg_map[reverse_seg_map == 0] = 1 |
|
reverse_seg_map[reverse_seg_map == -1] = 0 |
|
grad_loss = mse_criterion(relevance * reverse_seg_map, torch.zeros_like(relevance)) |
|
segmentation_loss = grad_loss |
|
|
|
|
|
with torch.no_grad(): |
|
output_orig = orig_model(image_ten) |
|
if args.temperature != 1: |
|
output = output / args.temperature |
|
classification_loss = criterion(output, class_name.flatten()) |
|
|
|
loss = args.lambda_seg * segmentation_loss + args.lambda_acc * classification_loss |
|
|
|
|
|
if i % args.save_interval == 0: |
|
orig_relevance = generate_relevance(orig_model, image_ten, index=class_name) |
|
for j in range(image_ten.shape[0]): |
|
image = get_image_with_relevance(image_ten[j], torch.ones_like(image_ten[j])) |
|
new_vis = get_image_with_relevance(image_ten[j]*relevance[j], torch.ones_like(image_ten[j])) |
|
old_vis = get_image_with_relevance(image_ten[j], orig_relevance[j]) |
|
gt = get_image_with_relevance(image_ten[j], seg_map[j]) |
|
h_img = cv2.hconcat([image, gt, old_vis, new_vis]) |
|
cv2.imwrite(f'{args.experiment_folder}/train_samples/res_{i}_{j}.jpg', h_img) |
|
|
|
|
|
acc1, acc5 = accuracy(output, class_name, topk=(1, 5)) |
|
losses.update(loss.item(), image_ten.size(0)) |
|
top1.update(acc1[0], image_ten.size(0)) |
|
top5.update(acc5[0], image_ten.size(0)) |
|
|
|
|
|
acc1_orig, acc5_orig = accuracy(output_orig, class_name, topk=(1, 5)) |
|
orig_top1.update(acc1_orig[0], image_ten.size(0)) |
|
orig_top5.update(acc5_orig[0], image_ten.size(0)) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if i % args.print_freq == 0: |
|
progress.display(i) |
|
args.logger.add_scalar('{}/{}'.format('train', 'segmentation_loss'), segmentation_loss, |
|
epoch*len(train_loader)+i) |
|
args.logger.add_scalar('{}/{}'.format('train', 'classification_loss'), classification_loss, |
|
epoch * len(train_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('train', 'orig_top1'), acc1_orig, |
|
epoch * len(train_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('train', 'top1'), acc1, |
|
epoch * len(train_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('train', 'orig_top5'), acc5_orig, |
|
epoch * len(train_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('train', 'top5'), acc5, |
|
epoch * len(train_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('train', 'tot_loss'), loss, |
|
epoch * len(train_loader) + i) |
|
|
|
|
|
def validate(val_loader, model, criterion, epoch, args): |
|
mse_criterion = torch.nn.MSELoss(reduction='mean') |
|
|
|
losses = AverageMeter('Loss', ':.4e') |
|
top1 = AverageMeter('Acc@1', ':6.2f') |
|
top5 = AverageMeter('Acc@5', ':6.2f') |
|
orig_top1 = AverageMeter('Acc@1_orig', ':6.2f') |
|
orig_top5 = AverageMeter('Acc@5_orig', ':6.2f') |
|
progress = ProgressMeter( |
|
len(val_loader), |
|
[losses, top1, top5, orig_top1, orig_top5], |
|
prefix="Epoch: [{}]".format(val_loader)) |
|
|
|
|
|
model.eval() |
|
|
|
orig_model = vit(pretrained=True).cuda() |
|
orig_model.eval() |
|
|
|
with torch.no_grad(): |
|
for i, (seg_map, image_ten, class_name) in enumerate(val_loader): |
|
if args.gpu is not None: |
|
image_ten = image_ten.cuda(args.gpu, non_blocking=True) |
|
if torch.cuda.is_available(): |
|
seg_map = seg_map.cuda(args.gpu, non_blocking=True) |
|
class_name = class_name.cuda(args.gpu, non_blocking=True) |
|
|
|
with torch.enable_grad(): |
|
image_ten.requires_grad = True |
|
output = model(image_ten) |
|
|
|
|
|
batch_size = image_ten.shape[0] |
|
index = class_name |
|
if index == None: |
|
index = np.argmax(output.cpu().data.numpy(), axis=-1) |
|
index = torch.tensor(index) |
|
|
|
one_hot = np.zeros((batch_size, output.shape[-1]), dtype=np.float32) |
|
one_hot[torch.arange(batch_size), index.data.cpu().numpy()] = 1 |
|
one_hot = torch.from_numpy(one_hot).requires_grad_(True) |
|
one_hot = torch.sum(one_hot.to(image_ten.device) * output) |
|
model.zero_grad() |
|
relevance = torch.autograd.grad(one_hot, image_ten)[0] |
|
|
|
reverse_seg_map = seg_map.clone() |
|
reverse_seg_map[reverse_seg_map == 1] = -1 |
|
reverse_seg_map[reverse_seg_map == 0] = 1 |
|
reverse_seg_map[reverse_seg_map == -1] = 0 |
|
grad_loss = mse_criterion(relevance * reverse_seg_map, torch.zeros_like(relevance)) |
|
segmentation_loss = grad_loss |
|
|
|
|
|
output = model(image_ten) |
|
with torch.no_grad(): |
|
output_orig = orig_model(image_ten) |
|
if args.temperature != 1: |
|
output = output / args.temperature |
|
classification_loss = criterion(output, class_name.flatten()) |
|
|
|
loss = args.lambda_seg * segmentation_loss + args.lambda_acc * classification_loss |
|
|
|
|
|
if i % args.save_interval == 0: |
|
with torch.enable_grad(): |
|
orig_relevance = generate_relevance(orig_model, image_ten, index=class_name) |
|
for j in range(image_ten.shape[0]): |
|
image = get_image_with_relevance(image_ten[j], torch.ones_like(image_ten[j])) |
|
new_vis = get_image_with_relevance(image_ten[j]*relevance[j], torch.ones_like(image_ten[j])) |
|
old_vis = get_image_with_relevance(image_ten[j], orig_relevance[j]) |
|
gt = get_image_with_relevance(image_ten[j], seg_map[j]) |
|
h_img = cv2.hconcat([image, gt, old_vis, new_vis]) |
|
cv2.imwrite(f'{args.experiment_folder}/val_samples/res_{i}_{j}.jpg', h_img) |
|
|
|
|
|
acc1, acc5 = accuracy(output, class_name, topk=(1, 5)) |
|
losses.update(loss.item(), image_ten.size(0)) |
|
top1.update(acc1[0], image_ten.size(0)) |
|
top5.update(acc5[0], image_ten.size(0)) |
|
|
|
|
|
acc1_orig, acc5_orig = accuracy(output_orig, class_name, topk=(1, 5)) |
|
orig_top1.update(acc1_orig[0], image_ten.size(0)) |
|
orig_top5.update(acc5_orig[0], image_ten.size(0)) |
|
|
|
if i % args.print_freq == 0: |
|
progress.display(i) |
|
args.logger.add_scalar('{}/{}'.format('val', 'segmentation_loss'), segmentation_loss, |
|
epoch * len(val_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('val', 'classification_loss'), classification_loss, |
|
epoch * len(val_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('val', 'orig_top1'), acc1_orig, |
|
epoch * len(val_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('val', 'top1'), acc1, |
|
epoch * len(val_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('val', 'orig_top5'), acc5_orig, |
|
epoch * len(val_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('val', 'top5'), acc5, |
|
epoch * len(val_loader) + i) |
|
args.logger.add_scalar('{}/{}'.format('val', 'tot_loss'), loss, |
|
epoch * len(val_loader) + i) |
|
|
|
|
|
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' |
|
.format(top1=top1, top5=top5)) |
|
|
|
return losses.avg |
|
|
|
|
|
def save_checkpoint(state, is_best, folder, filename='checkpoint.pth.tar'): |
|
torch.save(state, f'{folder}/{filename}') |
|
if is_best: |
|
shutil.copyfile(f'{folder}/{filename}', f'{folder}/model_best.pth.tar') |
|
|
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current value""" |
|
def __init__(self, name, fmt=':f'): |
|
self.name = name |
|
self.fmt = fmt |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
def __str__(self): |
|
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' |
|
return fmtstr.format(**self.__dict__) |
|
|
|
|
|
class ProgressMeter(object): |
|
def __init__(self, num_batches, meters, prefix=""): |
|
self.batch_fmtstr = self._get_batch_fmtstr(num_batches) |
|
self.meters = meters |
|
self.prefix = prefix |
|
|
|
def display(self, batch): |
|
entries = [self.prefix + self.batch_fmtstr.format(batch)] |
|
entries += [str(meter) for meter in self.meters] |
|
print('\t'.join(entries)) |
|
|
|
def _get_batch_fmtstr(self, num_batches): |
|
num_digits = len(str(num_batches // 1)) |
|
fmt = '{:' + str(num_digits) + 'd}' |
|
return '[' + fmt + '/' + fmt.format(num_batches) + ']' |
|
|
|
def adjust_learning_rate(optimizer, epoch, args): |
|
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" |
|
lr = args.lr * (0.85 ** (epoch // 2)) |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = lr |
|
|
|
|
|
def accuracy(output, target, topk=(1,)): |
|
"""Computes the accuracy over the k top predictions for the specified values of k""" |
|
with torch.no_grad(): |
|
maxk = max(topk) |
|
batch_size = target.size(0) |
|
|
|
_, pred = output.topk(maxk, 1, True, True) |
|
pred = pred.t() |
|
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
|
res = [] |
|
for k in topk: |
|
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) |
|
res.append(correct_k.mul_(100.0 / batch_size)) |
|
return res |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |