HikariDawn commited on
Commit
9bf54b1
1 Parent(s): 72f81a3

feat: DAT and comparison

Browse files
Files changed (3) hide show
  1. app.py +22 -6
  2. architecture/dat.py +889 -0
  3. test_code/test_utils.py +44 -0
app.py CHANGED
@@ -1,6 +1,10 @@
 
 
 
1
  import os, sys
2
  import cv2
3
  import time
 
4
  import gradio as gr
5
  import torch
6
  import numpy as np
@@ -11,7 +15,7 @@ from torchvision.utils import save_image
11
  root_path = os.path.abspath('.')
12
  sys.path.append(root_path)
13
  from test_code.inference import super_resolve_img
14
- from test_code.test_utils import load_grl, load_rrdb
15
 
16
 
17
  def auto_download_if_needed(weight_path):
@@ -32,7 +36,10 @@ def auto_download_if_needed(weight_path):
32
  if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth":
33
  os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth")
34
  os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained")
35
-
 
 
 
36
 
37
 
38
 
@@ -57,12 +64,20 @@ def inference(img_path, model_name):
57
  auto_download_if_needed(weight_path)
58
  generator = load_rrdb(weight_path, scale=2) # Directly use default way now
59
 
 
 
 
 
 
60
  else:
61
  raise gr.Error("We don't support such Model")
62
 
63
  generator = generator.to(dtype=weight_dtype)
64
 
65
 
 
 
 
66
  # In default, we will automatically use crop to match 4x size
67
  super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, downsample_threshold=720, crop_for_4x=True)
68
  store_name = str(time.time()) + ".png"
@@ -90,9 +105,9 @@ if __name__ == '__main__':
90
  APISR aims at restoring and enhancing low-quality low-resolution **anime** images and video sources with various degradations from real-world scenarios.
91
 
92
  ### Note: Due to memory restriction, all images whose short side is over 720 pixel will be downsampled to 720 pixel with the same aspect ratio. E.g., 1920x1080 -> 1280x720
93
- ### Note: Please check [Model Zoo](https://github.com/Kiteretsu77/APISR/blob/main/docs/model_zoo.md) for the description of each weight.
94
 
95
- If APISR is helpful, please help star the [GitHub Repo](https://github.com/Kiteretsu77/APISR). Thanks!
96
  """
97
 
98
  block = gr.Blocks().queue(max_size=10)
@@ -106,7 +121,8 @@ if __name__ == '__main__':
106
  [
107
  "2xRRDB",
108
  "4xRRDB",
109
- "4xGRL"
 
110
  ],
111
  type="value",
112
  value="4xGRL",
@@ -134,4 +150,4 @@ if __name__ == '__main__':
134
 
135
  run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image])
136
 
137
- block.launch()
 
1
+ '''
2
+ Gradio demo (almost the same code as the one used in Huggingface space)
3
+ '''
4
  import os, sys
5
  import cv2
6
  import time
7
+ import datetime, pytz
8
  import gradio as gr
9
  import torch
10
  import numpy as np
 
15
  root_path = os.path.abspath('.')
16
  sys.path.append(root_path)
17
  from test_code.inference import super_resolve_img
18
+ from test_code.test_utils import load_grl, load_rrdb, load_dat
19
 
20
 
21
  def auto_download_if_needed(weight_path):
 
36
  if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth":
37
  os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth")
38
  os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained")
39
+
40
+ if weight_path == "pretrained/4x_APISR_DAT_GAN_generator.pth":
41
+ os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.3.0/4x_APISR_DAT_GAN_generator.pth")
42
+ os.system("mv 4x_APISR_DAT_GAN_generator.pth pretrained")
43
 
44
 
45
 
 
64
  auto_download_if_needed(weight_path)
65
  generator = load_rrdb(weight_path, scale=2) # Directly use default way now
66
 
67
+ elif model_name == "4xDAT":
68
+ weight_path = "pretrained/4x_APISR_DAT_GAN_generator.pth"
69
+ auto_download_if_needed(weight_path)
70
+ generator = load_dat(weight_path, scale=4) # Directly use default way now
71
+
72
  else:
73
  raise gr.Error("We don't support such Model")
74
 
75
  generator = generator.to(dtype=weight_dtype)
76
 
77
 
78
+ print("We are processing ", img_path)
79
+ print("The time now is ", datetime.datetime.now(pytz.timezone('US/Eastern')))
80
+
81
  # In default, we will automatically use crop to match 4x size
82
  super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, downsample_threshold=720, crop_for_4x=True)
83
  store_name = str(time.time()) + ".png"
 
105
  APISR aims at restoring and enhancing low-quality low-resolution **anime** images and video sources with various degradations from real-world scenarios.
106
 
107
  ### Note: Due to memory restriction, all images whose short side is over 720 pixel will be downsampled to 720 pixel with the same aspect ratio. E.g., 1920x1080 -> 1280x720
108
+ ### Note: Please check [Model Zoo](https://github.com/Kiteretsu77/APISR/blob/main/docs/model_zoo.md) for the description of each weight and [Here](https://imgsli.com/MjU0MjI0) for model comparisons.
109
 
110
+ ### If APISR is helpful, please help star the [GitHub Repo](https://github.com/Kiteretsu77/APISR). Thanks! ###
111
  """
112
 
113
  block = gr.Blocks().queue(max_size=10)
 
121
  [
122
  "2xRRDB",
123
  "4xRRDB",
124
+ "4xGRL",
125
+ "4xDAT",
126
  ],
127
  type="value",
128
  value="4xGRL",
 
150
 
151
  run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image])
152
 
153
+ block.launch()
architecture/dat.py ADDED
@@ -0,0 +1,889 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ DAT network from https://github.com/zhengchen1999/DAT (https://openaccess.thecvf.com/content/ICCV2023/papers/Chen_Dual_Aggregation_Transformer_for_Image_Super-Resolution_ICCV_2023_paper.pdf)
3
+ '''
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.utils.checkpoint as checkpoint
8
+ from torch import Tensor
9
+ from torch.nn import functional as F
10
+
11
+ from timm.models.layers import DropPath, trunc_normal_
12
+ from einops.layers.torch import Rearrange
13
+ from einops import rearrange
14
+
15
+ import math
16
+ import numpy as np
17
+
18
+
19
+
20
+ def img2windows(img, H_sp, W_sp):
21
+ """
22
+ Input: Image (B, C, H, W)
23
+ Output: Window Partition (B', N, C)
24
+ """
25
+ B, C, H, W = img.shape
26
+ img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
27
+ img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp* W_sp, C)
28
+ return img_perm
29
+
30
+
31
+ def windows2img(img_splits_hw, H_sp, W_sp, H, W):
32
+ """
33
+ Input: Window Partition (B', N, C)
34
+ Output: Image (B, H, W, C)
35
+ """
36
+ B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
37
+
38
+ img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
39
+ img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
40
+ return img
41
+
42
+
43
+ class SpatialGate(nn.Module):
44
+ """ Spatial-Gate.
45
+ Args:
46
+ dim (int): Half of input channels.
47
+ """
48
+ def __init__(self, dim):
49
+ super().__init__()
50
+ self.norm = nn.LayerNorm(dim)
51
+ self.conv = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) # DW Conv
52
+
53
+ def forward(self, x, H, W):
54
+ # Split
55
+ x1, x2 = x.chunk(2, dim = -1)
56
+ B, N, C = x.shape
57
+ x2 = self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C//2, H, W)).flatten(2).transpose(-1, -2).contiguous()
58
+
59
+ return x1 * x2
60
+
61
+
62
+ class SGFN(nn.Module):
63
+ """ Spatial-Gate Feed-Forward Network.
64
+ Args:
65
+ in_features (int): Number of input channels.
66
+ hidden_features (int | None): Number of hidden channels. Default: None
67
+ out_features (int | None): Number of output channels. Default: None
68
+ act_layer (nn.Module): Activation layer. Default: nn.GELU
69
+ drop (float): Dropout rate. Default: 0.0
70
+ """
71
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
72
+ super().__init__()
73
+ out_features = out_features or in_features
74
+ hidden_features = hidden_features or in_features
75
+ self.fc1 = nn.Linear(in_features, hidden_features)
76
+ self.act = act_layer()
77
+ self.sg = SpatialGate(hidden_features//2)
78
+ self.fc2 = nn.Linear(hidden_features//2, out_features)
79
+ self.drop = nn.Dropout(drop)
80
+
81
+ def forward(self, x, H, W):
82
+ """
83
+ Input: x: (B, H*W, C), H, W
84
+ Output: x: (B, H*W, C)
85
+ """
86
+ x = self.fc1(x)
87
+ x = self.act(x)
88
+ x = self.drop(x)
89
+
90
+ x = self.sg(x, H, W)
91
+ x = self.drop(x)
92
+
93
+ x = self.fc2(x)
94
+ x = self.drop(x)
95
+ return x
96
+
97
+
98
+ class DynamicPosBias(nn.Module):
99
+ # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
100
+ """ Dynamic Relative Position Bias.
101
+ Args:
102
+ dim (int): Number of input channels.
103
+ num_heads (int): Number of attention heads.
104
+ residual (bool): If True, use residual strage to connect conv.
105
+ """
106
+ def __init__(self, dim, num_heads, residual):
107
+ super().__init__()
108
+ self.residual = residual
109
+ self.num_heads = num_heads
110
+ self.pos_dim = dim // 4
111
+ self.pos_proj = nn.Linear(2, self.pos_dim)
112
+ self.pos1 = nn.Sequential(
113
+ nn.LayerNorm(self.pos_dim),
114
+ nn.ReLU(inplace=True),
115
+ nn.Linear(self.pos_dim, self.pos_dim),
116
+ )
117
+ self.pos2 = nn.Sequential(
118
+ nn.LayerNorm(self.pos_dim),
119
+ nn.ReLU(inplace=True),
120
+ nn.Linear(self.pos_dim, self.pos_dim)
121
+ )
122
+ self.pos3 = nn.Sequential(
123
+ nn.LayerNorm(self.pos_dim),
124
+ nn.ReLU(inplace=True),
125
+ nn.Linear(self.pos_dim, self.num_heads)
126
+ )
127
+ def forward(self, biases):
128
+ if self.residual:
129
+ pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
130
+ pos = pos + self.pos1(pos)
131
+ pos = pos + self.pos2(pos)
132
+ pos = self.pos3(pos)
133
+ else:
134
+ pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
135
+ return pos
136
+
137
+
138
+ class Spatial_Attention(nn.Module):
139
+ """ Spatial Window Self-Attention.
140
+ It supports rectangle window (containing square window).
141
+ Args:
142
+ dim (int): Number of input channels.
143
+ idx (int): The indentix of window. (0/1)
144
+ split_size (tuple(int)): Height and Width of spatial window.
145
+ dim_out (int | None): The dimension of the attention output. Default: None
146
+ num_heads (int): Number of attention heads. Default: 6
147
+ attn_drop (float): Dropout ratio of attention weight. Default: 0.0
148
+ proj_drop (float): Dropout ratio of output. Default: 0.0
149
+ qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set
150
+ position_bias (bool): The dynamic relative position bias. Default: True
151
+ """
152
+ def __init__(self, dim, idx, split_size=[8,8], dim_out=None, num_heads=6, attn_drop=0., proj_drop=0., qk_scale=None, position_bias=True):
153
+ super().__init__()
154
+ self.dim = dim
155
+ self.dim_out = dim_out or dim
156
+ self.split_size = split_size
157
+ self.num_heads = num_heads
158
+ self.idx = idx
159
+ self.position_bias = position_bias
160
+
161
+ head_dim = dim // num_heads
162
+ self.scale = qk_scale or head_dim ** -0.5
163
+
164
+ if idx == 0:
165
+ H_sp, W_sp = self.split_size[0], self.split_size[1]
166
+ elif idx == 1:
167
+ W_sp, H_sp = self.split_size[0], self.split_size[1]
168
+ else:
169
+ print ("ERROR MODE", idx)
170
+ exit(0)
171
+ self.H_sp = H_sp
172
+ self.W_sp = W_sp
173
+
174
+ if self.position_bias:
175
+ self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
176
+ # generate mother-set
177
+ position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
178
+ position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
179
+ biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
180
+ biases = biases.flatten(1).transpose(0, 1).contiguous().float()
181
+ self.register_buffer('rpe_biases', biases)
182
+
183
+ # get pair-wise relative position index for each token inside the window
184
+ coords_h = torch.arange(self.H_sp)
185
+ coords_w = torch.arange(self.W_sp)
186
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
187
+ coords_flatten = torch.flatten(coords, 1)
188
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
189
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous()
190
+ relative_coords[:, :, 0] += self.H_sp - 1
191
+ relative_coords[:, :, 1] += self.W_sp - 1
192
+ relative_coords[:, :, 0] *= 2 * self.W_sp - 1
193
+ relative_position_index = relative_coords.sum(-1)
194
+ self.register_buffer('relative_position_index', relative_position_index)
195
+
196
+ self.attn_drop = nn.Dropout(attn_drop)
197
+
198
+ def im2win(self, x, H, W):
199
+ B, N, C = x.shape
200
+ x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
201
+ x = img2windows(x, self.H_sp, self.W_sp)
202
+ x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
203
+ return x
204
+
205
+ def forward(self, qkv, H, W, mask=None):
206
+ """
207
+ Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
208
+ Output: x (B, H, W, C)
209
+ """
210
+ q,k,v = qkv[0], qkv[1], qkv[2]
211
+
212
+ B, L, C = q.shape
213
+ assert L == H * W, "flatten img_tokens has wrong size"
214
+
215
+ # partition the q,k,v, image to window
216
+ q = self.im2win(q, H, W)
217
+ k = self.im2win(k, H, W)
218
+ v = self.im2win(v, H, W)
219
+
220
+ q = q * self.scale
221
+ attn = (q @ k.transpose(-2, -1)) # B head N C @ B head C N --> B head N N
222
+
223
+ # calculate drpe
224
+ if self.position_bias:
225
+ pos = self.pos(self.rpe_biases)
226
+ # select position bias
227
+ relative_position_bias = pos[self.relative_position_index.view(-1)].view(
228
+ self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1)
229
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
230
+ attn = attn + relative_position_bias.unsqueeze(0)
231
+
232
+ N = attn.shape[3]
233
+
234
+ # use mask for shift window
235
+ if mask is not None:
236
+ nW = mask.shape[0]
237
+ attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
238
+ attn = attn.view(-1, self.num_heads, N, N)
239
+
240
+ attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
241
+ attn = self.attn_drop(attn)
242
+
243
+ x = (attn @ v)
244
+ x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C) # B head N N @ B head N C
245
+
246
+ # merge the window, window to image
247
+ x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C
248
+
249
+ return x
250
+
251
+
252
+ class Adaptive_Spatial_Attention(nn.Module):
253
+ # The implementation builds on CAT code https://github.com/Zhengchen1999/CAT
254
+ """ Adaptive Spatial Self-Attention
255
+ Args:
256
+ dim (int): Number of input channels.
257
+ num_heads (int): Number of attention heads. Default: 6
258
+ split_size (tuple(int)): Height and Width of spatial window.
259
+ shift_size (tuple(int)): Shift size for spatial window.
260
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
261
+ qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
262
+ drop (float): Dropout rate. Default: 0.0
263
+ attn_drop (float): Attention dropout rate. Default: 0.0
264
+ rg_idx (int): The indentix of Residual Group (RG)
265
+ b_idx (int): The indentix of Block in each RG
266
+ """
267
+ def __init__(self, dim, num_heads,
268
+ reso=64, split_size=[8,8], shift_size=[1,2], qkv_bias=False, qk_scale=None,
269
+ drop=0., attn_drop=0., rg_idx=0, b_idx=0):
270
+ super().__init__()
271
+ self.dim = dim
272
+ self.num_heads = num_heads
273
+ self.split_size = split_size
274
+ self.shift_size = shift_size
275
+ self.b_idx = b_idx
276
+ self.rg_idx = rg_idx
277
+ self.patches_resolution = reso
278
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
279
+
280
+ assert 0 <= self.shift_size[0] < self.split_size[0], "shift_size must in 0-split_size0"
281
+ assert 0 <= self.shift_size[1] < self.split_size[1], "shift_size must in 0-split_size1"
282
+
283
+ self.branch_num = 2
284
+
285
+ self.proj = nn.Linear(dim, dim)
286
+ self.proj_drop = nn.Dropout(drop)
287
+
288
+ self.attns = nn.ModuleList([
289
+ Spatial_Attention(
290
+ dim//2, idx = i,
291
+ split_size=split_size, num_heads=num_heads//2, dim_out=dim//2,
292
+ qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, position_bias=True)
293
+ for i in range(self.branch_num)])
294
+
295
+ if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (self.rg_idx % 2 != 0 and self.b_idx % 4 == 0):
296
+ attn_mask = self.calculate_mask(self.patches_resolution, self.patches_resolution)
297
+ self.register_buffer("attn_mask_0", attn_mask[0])
298
+ self.register_buffer("attn_mask_1", attn_mask[1])
299
+ else:
300
+ attn_mask = None
301
+ self.register_buffer("attn_mask_0", None)
302
+ self.register_buffer("attn_mask_1", None)
303
+
304
+ self.dwconv = nn.Sequential(
305
+ nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim),
306
+ nn.BatchNorm2d(dim),
307
+ nn.GELU()
308
+ )
309
+ self.channel_interaction = nn.Sequential(
310
+ nn.AdaptiveAvgPool2d(1),
311
+ nn.Conv2d(dim, dim // 8, kernel_size=1),
312
+ nn.BatchNorm2d(dim // 8),
313
+ nn.GELU(),
314
+ nn.Conv2d(dim // 8, dim, kernel_size=1),
315
+ )
316
+ self.spatial_interaction = nn.Sequential(
317
+ nn.Conv2d(dim, dim // 16, kernel_size=1),
318
+ nn.BatchNorm2d(dim // 16),
319
+ nn.GELU(),
320
+ nn.Conv2d(dim // 16, 1, kernel_size=1)
321
+ )
322
+
323
+ def calculate_mask(self, H, W):
324
+ # The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
325
+ # calculate attention mask for shift window
326
+ img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0
327
+ img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1
328
+ h_slices_0 = (slice(0, -self.split_size[0]),
329
+ slice(-self.split_size[0], -self.shift_size[0]),
330
+ slice(-self.shift_size[0], None))
331
+ w_slices_0 = (slice(0, -self.split_size[1]),
332
+ slice(-self.split_size[1], -self.shift_size[1]),
333
+ slice(-self.shift_size[1], None))
334
+
335
+ h_slices_1 = (slice(0, -self.split_size[1]),
336
+ slice(-self.split_size[1], -self.shift_size[1]),
337
+ slice(-self.shift_size[1], None))
338
+ w_slices_1 = (slice(0, -self.split_size[0]),
339
+ slice(-self.split_size[0], -self.shift_size[0]),
340
+ slice(-self.shift_size[0], None))
341
+ cnt = 0
342
+ for h in h_slices_0:
343
+ for w in w_slices_0:
344
+ img_mask_0[:, h, w, :] = cnt
345
+ cnt += 1
346
+ cnt = 0
347
+ for h in h_slices_1:
348
+ for w in w_slices_1:
349
+ img_mask_1[:, h, w, :] = cnt
350
+ cnt += 1
351
+
352
+ # calculate mask for window-0
353
+ img_mask_0 = img_mask_0.view(1, H // self.split_size[0], self.split_size[0], W // self.split_size[1], self.split_size[1], 1)
354
+ img_mask_0 = img_mask_0.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.split_size[0], self.split_size[1], 1) # nW, sw[0], sw[1], 1
355
+ mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
356
+ attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
357
+ attn_mask_0 = attn_mask_0.masked_fill(attn_mask_0 != 0, float(-100.0)).masked_fill(attn_mask_0 == 0, float(0.0))
358
+
359
+ # calculate mask for window-1
360
+ img_mask_1 = img_mask_1.view(1, H // self.split_size[1], self.split_size[1], W // self.split_size[0], self.split_size[0], 1)
361
+ img_mask_1 = img_mask_1.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.split_size[1], self.split_size[0], 1) # nW, sw[1], sw[0], 1
362
+ mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
363
+ attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
364
+ attn_mask_1 = attn_mask_1.masked_fill(attn_mask_1 != 0, float(-100.0)).masked_fill(attn_mask_1 == 0, float(0.0))
365
+
366
+ return attn_mask_0, attn_mask_1
367
+
368
+ def forward(self, x, H, W):
369
+ """
370
+ Input: x: (B, H*W, C), H, W
371
+ Output: x: (B, H*W, C)
372
+ """
373
+ B, L, C = x.shape
374
+ assert L == H * W, "flatten img_tokens has wrong size"
375
+
376
+ qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C
377
+ # V without partition
378
+ v = qkv[2].transpose(-2,-1).contiguous().view(B, C, H, W)
379
+
380
+ # image padding
381
+ max_split_size = max(self.split_size[0], self.split_size[1])
382
+ pad_l = pad_t = 0
383
+ pad_r = (max_split_size - W % max_split_size) % max_split_size
384
+ pad_b = (max_split_size - H % max_split_size) % max_split_size
385
+
386
+ qkv = qkv.reshape(3*B, H, W, C).permute(0, 3, 1, 2) # 3B C H W
387
+ qkv = F.pad(qkv, (pad_l, pad_r, pad_t, pad_b)).reshape(3, B, C, -1).transpose(-2, -1) # l r t b
388
+ _H = pad_b + H
389
+ _W = pad_r + W
390
+ _L = _H * _W
391
+
392
+ # window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged
393
+ # shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ...
394
+ if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (self.rg_idx % 2 != 0 and self.b_idx % 4 == 0):
395
+ qkv = qkv.view(3, B, _H, _W, C)
396
+ qkv_0 = torch.roll(qkv[:,:,:,:,:C//2], shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(2, 3))
397
+ qkv_0 = qkv_0.view(3, B, _L, C//2)
398
+ qkv_1 = torch.roll(qkv[:,:,:,:,C//2:], shifts=(-self.shift_size[1], -self.shift_size[0]), dims=(2, 3))
399
+ qkv_1 = qkv_1.view(3, B, _L, C//2)
400
+
401
+ if self.patches_resolution != _H or self.patches_resolution != _W:
402
+ mask_tmp = self.calculate_mask(_H, _W)
403
+ x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
404
+ x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))
405
+ else:
406
+ x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
407
+ x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)
408
+
409
+ x1 = torch.roll(x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2))
410
+ x2 = torch.roll(x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2))
411
+ x1 = x1[:, :H, :W, :].reshape(B, L, C//2)
412
+ x2 = x2[:, :H, :W, :].reshape(B, L, C//2)
413
+ # attention output
414
+ attened_x = torch.cat([x1,x2], dim=2)
415
+
416
+ else:
417
+ x1 = self.attns[0](qkv[:,:,:,:C//2], _H, _W)[:, :H, :W, :].reshape(B, L, C//2)
418
+ x2 = self.attns[1](qkv[:,:,:,C//2:], _H, _W)[:, :H, :W, :].reshape(B, L, C//2)
419
+ # attention output
420
+ attened_x = torch.cat([x1,x2], dim=2)
421
+
422
+ # convolution output
423
+ conv_x = self.dwconv(v)
424
+
425
+ # Adaptive Interaction Module (AIM)
426
+ # C-Map (before sigmoid)
427
+ channel_map = self.channel_interaction(conv_x).permute(0, 2, 3, 1).contiguous().view(B, 1, C)
428
+ # S-Map (before sigmoid)
429
+ attention_reshape = attened_x.transpose(-2,-1).contiguous().view(B, C, H, W)
430
+ spatial_map = self.spatial_interaction(attention_reshape)
431
+
432
+ # C-I
433
+ attened_x = attened_x * torch.sigmoid(channel_map)
434
+ # S-I
435
+ conv_x = torch.sigmoid(spatial_map) * conv_x
436
+ conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
437
+
438
+ x = attened_x + conv_x
439
+
440
+ x = self.proj(x)
441
+ x = self.proj_drop(x)
442
+
443
+ return x
444
+
445
+
446
+ class Adaptive_Channel_Attention(nn.Module):
447
+ # The implementation builds on XCiT code https://github.com/facebookresearch/xcit
448
+ """ Adaptive Channel Self-Attention
449
+ Args:
450
+ dim (int): Number of input channels.
451
+ num_heads (int): Number of attention heads. Default: 6
452
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
453
+ qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
454
+ attn_drop (float): Attention dropout rate. Default: 0.0
455
+ drop_path (float): Stochastic depth rate. Default: 0.0
456
+ """
457
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
458
+ super().__init__()
459
+ self.num_heads = num_heads
460
+ self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
461
+
462
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
463
+ self.attn_drop = nn.Dropout(attn_drop)
464
+ self.proj = nn.Linear(dim, dim)
465
+ self.proj_drop = nn.Dropout(proj_drop)
466
+
467
+ self.dwconv = nn.Sequential(
468
+ nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim),
469
+ nn.BatchNorm2d(dim),
470
+ nn.GELU()
471
+ )
472
+ self.channel_interaction = nn.Sequential(
473
+ nn.AdaptiveAvgPool2d(1),
474
+ nn.Conv2d(dim, dim // 8, kernel_size=1),
475
+ nn.BatchNorm2d(dim // 8),
476
+ nn.GELU(),
477
+ nn.Conv2d(dim // 8, dim, kernel_size=1),
478
+ )
479
+ self.spatial_interaction = nn.Sequential(
480
+ nn.Conv2d(dim, dim // 16, kernel_size=1),
481
+ nn.BatchNorm2d(dim // 16),
482
+ nn.GELU(),
483
+ nn.Conv2d(dim // 16, 1, kernel_size=1)
484
+ )
485
+
486
+ def forward(self, x, H, W):
487
+ """
488
+ Input: x: (B, H*W, C), H, W
489
+ Output: x: (B, H*W, C)
490
+ """
491
+ B, N, C = x.shape
492
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
493
+ qkv = qkv.permute(2, 0, 3, 1, 4)
494
+ q, k, v = qkv[0], qkv[1], qkv[2]
495
+
496
+ q = q.transpose(-2, -1)
497
+ k = k.transpose(-2, -1)
498
+ v = v.transpose(-2, -1)
499
+
500
+ v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W)
501
+
502
+ q = torch.nn.functional.normalize(q, dim=-1)
503
+ k = torch.nn.functional.normalize(k, dim=-1)
504
+
505
+ attn = (q @ k.transpose(-2, -1)) * self.temperature
506
+ attn = attn.softmax(dim=-1)
507
+ attn = self.attn_drop(attn)
508
+
509
+ # attention output
510
+ attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
511
+
512
+ # convolution output
513
+ conv_x = self.dwconv(v_)
514
+
515
+ # Adaptive Interaction Module (AIM)
516
+ # C-Map (before sigmoid)
517
+ attention_reshape = attened_x.transpose(-2,-1).contiguous().view(B, C, H, W)
518
+ channel_map = self.channel_interaction(attention_reshape)
519
+ # S-Map (before sigmoid)
520
+ spatial_map = self.spatial_interaction(conv_x).permute(0, 2, 3, 1).contiguous().view(B, N, 1)
521
+
522
+ # S-I
523
+ attened_x = attened_x * torch.sigmoid(spatial_map)
524
+ # C-I
525
+ conv_x = conv_x * torch.sigmoid(channel_map)
526
+ conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C)
527
+
528
+ x = attened_x + conv_x
529
+
530
+ x = self.proj(x)
531
+ x = self.proj_drop(x)
532
+
533
+ return x
534
+
535
+
536
+ class DATB(nn.Module):
537
+ def __init__(self, dim, num_heads, reso=64, split_size=[2,4],shift_size=[1,2], expansion_factor=4., qkv_bias=False, qk_scale=None, drop=0.,
538
+ attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rg_idx=0, b_idx=0):
539
+ super().__init__()
540
+
541
+ self.norm1 = norm_layer(dim)
542
+
543
+ if b_idx % 2 == 0:
544
+ # DSTB
545
+ self.attn = Adaptive_Spatial_Attention(
546
+ dim, num_heads=num_heads, reso=reso, split_size=split_size, shift_size=shift_size, qkv_bias=qkv_bias, qk_scale=qk_scale,
547
+ drop=drop, attn_drop=attn_drop, rg_idx=rg_idx, b_idx=b_idx
548
+ )
549
+ else:
550
+ # DCTB
551
+ self.attn = Adaptive_Channel_Attention(
552
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
553
+ proj_drop=drop
554
+ )
555
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
556
+
557
+ ffn_hidden_dim = int(dim * expansion_factor)
558
+ self.ffn = SGFN(in_features=dim, hidden_features=ffn_hidden_dim, out_features=dim, act_layer=act_layer)
559
+ self.norm2 = norm_layer(dim)
560
+
561
+ def forward(self, x, x_size):
562
+ """
563
+ Input: x: (B, H*W, C), x_size: (H, W)
564
+ Output: x: (B, H*W, C)
565
+ """
566
+ H , W = x_size
567
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
568
+ x = x + self.drop_path(self.ffn(self.norm2(x), H, W))
569
+
570
+ return x
571
+
572
+
573
+ class ResidualGroup(nn.Module):
574
+ """ ResidualGroup
575
+ Args:
576
+ dim (int): Number of input channels.
577
+ reso (int): Input resolution.
578
+ num_heads (int): Number of attention heads.
579
+ split_size (tuple(int)): Height and Width of spatial window.
580
+ expansion_factor (float): Ratio of ffn hidden dim to embedding dim.
581
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
582
+ qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
583
+ drop (float): Dropout rate. Default: 0
584
+ attn_drop(float): Attention dropout rate. Default: 0
585
+ drop_paths (float | None): Stochastic depth rate.
586
+ act_layer (nn.Module): Activation layer. Default: nn.GELU
587
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
588
+ depth (int): Number of dual aggregation Transformer blocks in residual group.
589
+ use_chk (bool): Whether to use checkpointing to save memory.
590
+ resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
591
+ """
592
+ def __init__( self,
593
+ dim,
594
+ reso,
595
+ num_heads,
596
+ split_size=[2,4],
597
+ expansion_factor=4.,
598
+ qkv_bias=False,
599
+ qk_scale=None,
600
+ drop=0.,
601
+ attn_drop=0.,
602
+ drop_paths=None,
603
+ act_layer=nn.GELU,
604
+ norm_layer=nn.LayerNorm,
605
+ depth=2,
606
+ use_chk=False,
607
+ resi_connection='1conv',
608
+ rg_idx=0):
609
+ super().__init__()
610
+ self.use_chk = use_chk
611
+ self.reso = reso
612
+
613
+ self.blocks = nn.ModuleList([
614
+ DATB(
615
+ dim=dim,
616
+ num_heads=num_heads,
617
+ reso = reso,
618
+ split_size = split_size,
619
+ shift_size = [split_size[0]//2, split_size[1]//2],
620
+ expansion_factor=expansion_factor,
621
+ qkv_bias=qkv_bias,
622
+ qk_scale=qk_scale,
623
+ drop=drop,
624
+ attn_drop=attn_drop,
625
+ drop_path=drop_paths[i],
626
+ act_layer=act_layer,
627
+ norm_layer=norm_layer,
628
+ rg_idx = rg_idx,
629
+ b_idx = i,
630
+ )for i in range(depth)])
631
+
632
+ if resi_connection == '1conv':
633
+ self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
634
+ elif resi_connection == '3conv':
635
+ self.conv = nn.Sequential(
636
+ nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
637
+ nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
638
+ nn.Conv2d(dim // 4, dim, 3, 1, 1))
639
+
640
+ def forward(self, x, x_size):
641
+ """
642
+ Input: x: (B, H*W, C), x_size: (H, W)
643
+ Output: x: (B, H*W, C)
644
+ """
645
+ H, W = x_size
646
+ res = x
647
+ for blk in self.blocks:
648
+ if self.use_chk:
649
+ x = checkpoint.checkpoint(blk, x, x_size)
650
+ else:
651
+ x = blk(x, x_size)
652
+ x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
653
+ x = self.conv(x)
654
+ x = rearrange(x, "b c h w -> b (h w) c")
655
+ x = res + x
656
+
657
+ return x
658
+
659
+
660
+ class Upsample(nn.Sequential):
661
+ """Upsample module.
662
+ Args:
663
+ scale (int): Scale factor. Supported scales: 2^n and 3.
664
+ num_feat (int): Channel number of intermediate features.
665
+ """
666
+ def __init__(self, scale, num_feat):
667
+ m = []
668
+ if (scale & (scale - 1)) == 0: # scale = 2^n
669
+ for _ in range(int(math.log(scale, 2))):
670
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
671
+ m.append(nn.PixelShuffle(2))
672
+ elif scale == 3:
673
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
674
+ m.append(nn.PixelShuffle(3))
675
+ else:
676
+ raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
677
+ super(Upsample, self).__init__(*m)
678
+
679
+
680
+ class UpsampleOneStep(nn.Sequential):
681
+ """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
682
+ Used in lightweight SR to save parameters.
683
+
684
+ Args:
685
+ scale (int): Scale factor. Supported scales: 2^n and 3.
686
+ num_feat (int): Channel number of intermediate features.
687
+
688
+ """
689
+
690
+ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
691
+ self.num_feat = num_feat
692
+ self.input_resolution = input_resolution
693
+ m = []
694
+ m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
695
+ m.append(nn.PixelShuffle(scale))
696
+ super(UpsampleOneStep, self).__init__(*m)
697
+
698
+ def flops(self):
699
+ h, w = self.input_resolution
700
+ flops = h * w * self.num_feat * 3 * 9
701
+ return flops
702
+
703
+
704
+ class DAT(nn.Module):
705
+ """ Dual Aggregation Transformer
706
+ Args:
707
+ img_size (int): Input image size. Default: 64
708
+ in_chans (int): Number of input image channels. Default: 3
709
+ embed_dim (int): Patch embedding dimension. Default: 180
710
+ depths (tuple(int)): Depth of each residual group (number of DATB in each RG).
711
+ split_size (tuple(int)): Height and Width of spatial window.
712
+ num_heads (tuple(int)): Number of attention heads in different residual groups.
713
+ expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4
714
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
715
+ qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
716
+ drop_rate (float): Dropout rate. Default: 0
717
+ attn_drop_rate (float): Attention dropout rate. Default: 0
718
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
719
+ act_layer (nn.Module): Activation layer. Default: nn.GELU
720
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
721
+ use_chk (bool): Whether to use checkpointing to save memory.
722
+ upscale: Upscale factor. 2/3/4 for image SR
723
+ img_range: Image range. 1. or 255.
724
+ resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
725
+ """
726
+ def __init__(self,
727
+ img_size=64,
728
+ in_chans=3,
729
+ embed_dim=180,
730
+ split_size=[2,4],
731
+ depth=[2,2,2,2],
732
+ num_heads=[2,2,2,2],
733
+ expansion_factor=4.,
734
+ qkv_bias=True,
735
+ qk_scale=None,
736
+ drop_rate=0.,
737
+ attn_drop_rate=0.,
738
+ drop_path_rate=0.1,
739
+ act_layer=nn.GELU,
740
+ norm_layer=nn.LayerNorm,
741
+ use_chk=False,
742
+ upscale=2,
743
+ img_range=1.,
744
+ resi_connection='1conv',
745
+ upsampler='pixelshuffle',
746
+ **kwargs):
747
+ super().__init__()
748
+
749
+ num_in_ch = in_chans
750
+ num_out_ch = in_chans
751
+ num_feat = 64
752
+ self.img_range = img_range
753
+ if in_chans == 3:
754
+ rgb_mean = (0.4488, 0.4371, 0.4040)
755
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
756
+ else:
757
+ self.mean = torch.zeros(1, 1, 1, 1)
758
+ self.upscale = upscale
759
+ self.upsampler = upsampler
760
+
761
+ # ------------------------- 1, Shallow Feature Extraction ------------------------- #
762
+ self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
763
+
764
+ # ------------------------- 2, Deep Feature Extraction ------------------------- #
765
+ self.num_layers = len(depth)
766
+ self.use_chk = use_chk
767
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
768
+ heads=num_heads
769
+
770
+ self.before_RG = nn.Sequential(
771
+ Rearrange('b c h w -> b (h w) c'),
772
+ nn.LayerNorm(embed_dim)
773
+ )
774
+
775
+ curr_dim = embed_dim
776
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))] # stochastic depth decay rule
777
+
778
+ self.layers = nn.ModuleList()
779
+ for i in range(self.num_layers):
780
+ layer = ResidualGroup(
781
+ dim=embed_dim,
782
+ num_heads=heads[i],
783
+ reso=img_size,
784
+ split_size=split_size,
785
+ expansion_factor=expansion_factor,
786
+ qkv_bias=qkv_bias,
787
+ qk_scale=qk_scale,
788
+ drop=drop_rate,
789
+ attn_drop=attn_drop_rate,
790
+ drop_paths=dpr[sum(depth[:i]):sum(depth[:i + 1])],
791
+ act_layer=act_layer,
792
+ norm_layer=norm_layer,
793
+ depth=depth[i],
794
+ use_chk=use_chk,
795
+ resi_connection=resi_connection,
796
+ rg_idx=i)
797
+ self.layers.append(layer)
798
+
799
+ self.norm = norm_layer(curr_dim)
800
+ # build the last conv layer in deep feature extraction
801
+ if resi_connection == '1conv':
802
+ self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
803
+ elif resi_connection == '3conv':
804
+ # to save parameters and memory
805
+ self.conv_after_body = nn.Sequential(
806
+ nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
807
+ nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
808
+ nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
809
+
810
+ # ------------------------- 3, Reconstruction ------------------------- #
811
+ if self.upsampler == 'pixelshuffle':
812
+ # for classical SR
813
+ self.conv_before_upsample = nn.Sequential(
814
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
815
+ self.upsample = Upsample(upscale, num_feat)
816
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
817
+ elif self.upsampler == 'pixelshuffledirect':
818
+ # for lightweight SR (to save parameters)
819
+ self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
820
+ (img_size, img_size))
821
+
822
+ self.apply(self._init_weights)
823
+
824
+ def _init_weights(self, m):
825
+ if isinstance(m, nn.Linear):
826
+ trunc_normal_(m.weight, std=.02)
827
+ if isinstance(m, nn.Linear) and m.bias is not None:
828
+ nn.init.constant_(m.bias, 0)
829
+ elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)):
830
+ nn.init.constant_(m.bias, 0)
831
+ nn.init.constant_(m.weight, 1.0)
832
+
833
+ def forward_features(self, x):
834
+ _, _, H, W = x.shape
835
+ x_size = [H, W]
836
+ x = self.before_RG(x)
837
+ for layer in self.layers:
838
+ x = layer(x, x_size)
839
+ x = self.norm(x)
840
+ x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
841
+
842
+ return x
843
+
844
+ def forward(self, x):
845
+ """
846
+ Input: x: (B, C, H, W)
847
+ """
848
+ self.mean = self.mean.type_as(x)
849
+ x = (x - self.mean) * self.img_range
850
+
851
+ if self.upsampler == 'pixelshuffle':
852
+ # for image SR
853
+ x = self.conv_first(x)
854
+ x = self.conv_after_body(self.forward_features(x)) + x
855
+ x = self.conv_before_upsample(x)
856
+ x = self.conv_last(self.upsample(x))
857
+ elif self.upsampler == 'pixelshuffledirect':
858
+ # for lightweight SR
859
+ x = self.conv_first(x)
860
+ x = self.conv_after_body(self.forward_features(x)) + x
861
+ x = self.upsample(x)
862
+
863
+ x = x / self.img_range + self.mean
864
+ return x
865
+
866
+
867
+ if __name__ == '__main__':
868
+ upscale = 1
869
+ height = 64
870
+ width = 64
871
+ model = DAT(upscale=4,
872
+ in_chans=3,
873
+ img_size=64,
874
+ img_range=1.,
875
+ depth=[18],
876
+ embed_dim=60,
877
+ num_heads=[6],
878
+ expansion_factor=2,
879
+ resi_connection='3conv',
880
+ split_size=[8,32],
881
+ upsampler='pixelshuffledirect',
882
+ ).cuda().eval()
883
+
884
+ print(height, width)
885
+
886
+ x = torch.randn((1, 3, height, width)).cuda()
887
+ x = model(x)
888
+
889
+ print(x.shape)
test_code/test_utils.py CHANGED
@@ -7,6 +7,7 @@ sys.path.append(root_path)
7
  from opt import opt
8
  from architecture.rrdb import RRDBNet
9
  from architecture.grl import GRL
 
10
  from architecture.swinir import SwinIR
11
  from architecture.cunet import UNet_Full
12
 
@@ -173,4 +174,47 @@ def load_grl(generator_weight_PATH, scale=4):
173
  print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")
174
 
175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  return generator
 
7
  from opt import opt
8
  from architecture.rrdb import RRDBNet
9
  from architecture.grl import GRL
10
+ from architecture.dat import DAT
11
  from architecture.swinir import SwinIR
12
  from architecture.cunet import UNet_Full
13
 
 
174
  print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")
175
 
176
 
177
+ return generator
178
+
179
+
180
+
181
+ def load_dat(generator_weight_PATH, scale=4):
182
+
183
+ # Load the checkpoint
184
+ checkpoint_g = torch.load(generator_weight_PATH)
185
+
186
+ # Find the generator weight
187
+ if 'model_state_dict' in checkpoint_g:
188
+ weight = checkpoint_g['model_state_dict']
189
+
190
+ # DAT small model in default
191
+ generator = DAT(upscale = 4,
192
+ in_chans = 3,
193
+ img_size = 64,
194
+ img_range = 1.,
195
+ depth = [6, 6, 6, 6, 6, 6],
196
+ embed_dim = 180,
197
+ num_heads = [6, 6, 6, 6, 6, 6],
198
+ expansion_factor = 2,
199
+ resi_connection = '1conv',
200
+ split_size = [8, 16],
201
+ upsampler = 'pixelshuffledirect',
202
+ ).cuda()
203
+
204
+ else:
205
+ print("This weight is not supported")
206
+ os._exit(0)
207
+
208
+
209
+ generator.load_state_dict(weight)
210
+ generator = generator.eval().cuda()
211
+
212
+
213
+ num_params = 0
214
+ for p in generator.parameters():
215
+ if p.requires_grad:
216
+ num_params += p.numel()
217
+ print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")
218
+
219
+
220
  return generator