Spaces:
Runtime error
Runtime error
thinh-huynh-re
commited on
Commit
•
24611b8
1
Parent(s):
09e8ab4
Init
Browse files- .gitignore +4 -0
- app.py +109 -0
- requirements.txt +5 -0
- tmp/.gitkeep +0 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
env
|
3 |
+
tmp/*
|
4 |
+
!tmp/.gitkeep
|
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Tuple
|
3 |
+
import multiprocessing
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import streamlit as st
|
8 |
+
import torch
|
9 |
+
from torch import Tensor
|
10 |
+
from decord import VideoReader, cpu
|
11 |
+
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
12 |
+
|
13 |
+
np.random.seed(0)
|
14 |
+
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="TimeSFormer",
|
17 |
+
page_icon="🧊",
|
18 |
+
layout="wide",
|
19 |
+
initial_sidebar_state="expanded",
|
20 |
+
menu_items={
|
21 |
+
"Get Help": "https://www.extremelycoolapp.com/help",
|
22 |
+
"Report a bug": "https://www.extremelycoolapp.com/bug",
|
23 |
+
"About": "# This is a header. This is an *extremely* cool app!",
|
24 |
+
},
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def sample_frame_indices(
|
29 |
+
clip_len: int, frame_sample_rate: float, seg_len: int
|
30 |
+
) -> np.ndarray:
|
31 |
+
converted_len = int(clip_len * frame_sample_rate)
|
32 |
+
end_idx = np.random.randint(converted_len, seg_len)
|
33 |
+
start_idx = end_idx - converted_len
|
34 |
+
indices = np.linspace(start_idx, end_idx, num=clip_len)
|
35 |
+
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
36 |
+
return indices
|
37 |
+
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
def load_model():
|
41 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
42 |
+
"MCG-NJU/videomae-base-finetuned-kinetics"
|
43 |
+
)
|
44 |
+
model = TimesformerForVideoClassification.from_pretrained(
|
45 |
+
"facebook/timesformer-base-finetuned-k400"
|
46 |
+
)
|
47 |
+
return feature_extractor, model
|
48 |
+
|
49 |
+
|
50 |
+
feature_extractor, model = load_model()
|
51 |
+
|
52 |
+
|
53 |
+
def inference(file_path: str):
|
54 |
+
videoreader = VideoReader(VIDEO_TMP_PATH, num_threads=1, ctx=cpu(0))
|
55 |
+
|
56 |
+
# sample 8 frames
|
57 |
+
videoreader.seek(0)
|
58 |
+
indices = sample_frame_indices(
|
59 |
+
clip_len=8, frame_sample_rate=4, seg_len=len(videoreader)
|
60 |
+
)
|
61 |
+
video = videoreader.get_batch(indices).asnumpy()
|
62 |
+
|
63 |
+
inputs = feature_extractor(list(video), return_tensors="pt")
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(**inputs)
|
67 |
+
logits: Tensor = outputs.logits
|
68 |
+
|
69 |
+
# model predicts one of the 400 Kinetics-400 classes
|
70 |
+
predicted_label = logits.argmax(-1).item()
|
71 |
+
print(model.config.id2label[predicted_label])
|
72 |
+
|
73 |
+
TOP_K = 5
|
74 |
+
# logits = np.squeeze(logits)
|
75 |
+
logits = logits.squeeze().numpy()
|
76 |
+
indices = np.argsort(logits)[::-1][:TOP_K]
|
77 |
+
values = logits[indices]
|
78 |
+
|
79 |
+
results: List[Tuple[str, float]] = []
|
80 |
+
for index, value in zip(indices, values):
|
81 |
+
predicted_label = model.config.id2label[index]
|
82 |
+
print(f"Label: {predicted_label} - {value:.2f}%")
|
83 |
+
results.append((predicted_label, value))
|
84 |
+
|
85 |
+
return pd.DataFrame(results, columns=("Label", "Confidence"))
|
86 |
+
|
87 |
+
|
88 |
+
st.title("TimeSFormer")
|
89 |
+
|
90 |
+
with st.expander("INTRODUCTION"):
|
91 |
+
st.text(
|
92 |
+
f"""Streamlit demo for TimeSFormer.
|
93 |
+
Author: Hiep Phuoc Secondary High School
|
94 |
+
Number of CPU(s): {multiprocessing.cpu_count()}
|
95 |
+
"""
|
96 |
+
)
|
97 |
+
|
98 |
+
VIDEO_TMP_PATH = os.path.join("tmp", "tmp.mp4")
|
99 |
+
uploadedfile = st.file_uploader("Upload file", type=["mp4"])
|
100 |
+
|
101 |
+
if uploadedfile is not None:
|
102 |
+
with st.spinner():
|
103 |
+
with open(VIDEO_TMP_PATH, "wb") as f:
|
104 |
+
f.write(uploadedfile.getbuffer())
|
105 |
+
|
106 |
+
with st.spinner("Processing..."):
|
107 |
+
df = inference(VIDEO_TMP_PATH)
|
108 |
+
st.dataframe(df)
|
109 |
+
st.video(VIDEO_TMP_PATH)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
decord
|
5 |
+
black
|
tmp/.gitkeep
ADDED
File without changes
|