Spaces:
Sleeping
Sleeping
from datasets import load_dataset | |
import faiss | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
# Load the US-LegalKit dataset | |
dataset = load_dataset("macadeliccc/US-LegalKit", split="train") | |
# Extract legal text documents | |
law_data = [item['text'] for item in dataset if 'text' in item] | |
# Load embedding model | |
model = SentenceTransformer("all-MiniLM-L6-v2") | |
# Generate embeddings | |
embeddings = model.encode(law_data, convert_to_numpy=True) | |
# Create FAISS index | |
dimension = embeddings.shape[1] | |
index = faiss.IndexFlatL2(dimension) # L2 Distance Index | |
index.add(embeddings) # Add vectors to FAISS index | |
# Save FAISS index | |
faiss.write_index(index, "faiss_index.bin") | |
print("✅ FAISS index saved successfully as 'faiss_index.bin'!") | |