EkhiAzur's picture
Update app.py
cc8d2c8
raw
history blame
1.81 kB
import gradio as gr
import os
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import json
access_token = os.environ['ACCES_TOKEN']
model = AutoModelForSequenceClassification.from_pretrained("EkhiAzur/C1_Sailkapen_Demoa", token=access_token)
tokenizer = AutoTokenizer.from_pretrained(
"EkhiAzur/C1_Sailkapen_Demoa",
token = access_token,
use_fast=True,
add_prefix_space=True,
)
classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, max_length=512,
padding=True, truncation=True, batch_size=1)
adibideak = json.load(open("./Adibideak.json", "r"))
def prozesatu(Testua, request: gr.Request):
if Testua[-3:]=="...":
Testua = prozesatu.adibideak[Testua]
prediction = prozesatu.classifier(Testua)[0]
if prediction["label"]=="GAI":
return {"Gai":prediction["score"], "Ez gai": 1-prediction["score"]}
else:
return {"Gai":1-prediction["score"], "Ez gai": prediction["score"]}
prozesatu.adibideak = adibideak
prozesatu.classifier = classifier
def ezabatu(Testua):
return ""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input = gr.Textbox(label="Testua")
with gr.Row():
bidali_btn = gr.Button("Bidali")
ezabatu_btn = gr.Button("Ezabatu")
label = gr.Label(num_top_classes=2, label="C1 maila")
bidali_btn.click(fn=prozesatu, inputs=input, outputs=label)
ezabatu_btn.click(fn=ezabatu, inputs=input, outputs=input)
gr.Examples(['Bilbo, 2020ko irailaren 28a Jaun agurgarria, Elene Goikoetxea...', 'Zuzendari agurgarria, Gutun hau bidaltzearen helburua...', 'Gure egunerokoan erabiltzen ditugun tresna gehiakan...'], inputs=input, outputs=label, label="Adibideak:", fn=prozesatu, cache_examples=True)
demo.launch()