Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
import json | |
import socket | |
from datetime import datetime | |
import huggingface_hub | |
from huggingface_hub import Repository | |
import os | |
access_token = os.environ['ACCES_TOKEN'] | |
edit_token = os.environ['EDIT_TOKEN'] | |
DATASET_REPO_URL = "https://huggingface.co/datasets/EkhiAzur/Demoko_informazioa" | |
DATA_FILENAME = "Erabiltzaileak.txt" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
model = AutoModelForSequenceClassification.from_pretrained("EkhiAzur/C1_Sailkapen_Demoa", token=access_token) | |
tokenizer = AutoTokenizer.from_pretrained( | |
"EkhiAzur/C1_Sailkapen_Demoa", | |
token = access_token, | |
use_fast=True, | |
add_prefix_space=True, | |
) | |
classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, max_length=512, | |
padding=True, truncation=True, batch_size=1) | |
adibideak = json.load(open("./Adibideak.json", "r")) | |
def prozesatu(Testua, request: gr.Request): | |
repo = Repository( | |
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=edit_token | |
) | |
#Ip-a lortzeko kontuak | |
client_ip = request.client.host | |
local_ip = socket.gethostbyname(socket.gethostbyname("")) | |
headers = request.kwargs['headers'] | |
if headers and 'x-forwarded-for' in headers: | |
x_forwarded_for = headers['x-forwarded-for'] | |
client_ip = x_forwarded_for.split(' ')[0] if x_forwarded_for else "" | |
# Eguna eta ordua lortu | |
now = datetime.now() | |
#Fitxategian gorde | |
f = open(DATA_FILE, "a") | |
print(f'Erabiltzailea: {client_ip}. Eguna eta ordua: {now}.\n') | |
f.write(f'Erabiltzailea: {client_ip}. Eguna eta ordua: {now}.\n') | |
f.close() | |
commit_url = repo.push_to_hub() | |
prediction = prozesatu.classifier(Testua)[0] | |
if prediction["label"]=="GAI": | |
return {"Gai":prediction["score"], "Ez gai": 1-prediction["score"]} | |
else: | |
return {"Gai":1-prediction["score"], "Ez gai": prediction["score"]} | |
def testua_itzuli(testua): | |
if testua not in testua_itzuli.adibideak: | |
return "" | |
return testua_itzuli.adibideak[testua] | |
testua_itzuli.adibideak = adibideak | |
prozesatu.adibideak = adibideak | |
prozesatu.classifier = classifier | |
def ezabatu(Testua): | |
return "" | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
input = gr.Textbox(label="Testua") | |
with gr.Row(): | |
bidali_btn = gr.Button("Bidali") | |
ezabatu_btn = gr.Button("Ezabatu") | |
label = gr.Label(num_top_classes=2, label="C1 maila") | |
bidali_btn.click(fn=prozesatu, inputs=input, outputs=label) | |
ezabatu_btn.click(fn=ezabatu, inputs=input, outputs=input) | |
gr.Examples(list(adibideak.keys()), inputs=input, outputs=input, label="Adibideak:", fn=testua_itzuli, cache_examples=True) | |
demo.launch() |