Hexii commited on
Commit
963e310
1 Parent(s): 4346c99

first commit

Browse files
09_pretrained_effnetb2_fine_tuned_food101_full_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4abcd9124ec1b95399c2809669d00b0b9e9d25e0a11847b656fdab2b531fa8ee
3
+ size 31825353
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_effnetb2_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ with open("class_names.txt", "r") as f: # reading them in from class_names.txt
12
+ class_names = [food_name.strip() for food_name in f.readlines()]
13
+
14
+ ### 2. Model and transforms preparation ###
15
+
16
+ # Create model
17
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
18
+ num_classes=101, # could also use len(class_names)
19
+ )
20
+
21
+ # Load saved weights
22
+ effnetb2.load_state_dict(
23
+ torch.load(
24
+ f="09_pretrained_effnetb2_fine_tuned_food101_full_20_percent.pth",
25
+ map_location=torch.device("cpu"), # load to CPU
26
+ )
27
+ )
28
+
29
+ ### 3. Predict function ###
30
+
31
+ # Create predict function
32
+ def predict(img) -> Tuple[Dict, float]:
33
+ """Transforms and performs a prediction on img and returns prediction and time taken.
34
+ """
35
+ # Start the timer
36
+ start_time = timer()
37
+
38
+ # Transform the target image and add a batch dimension
39
+ img = effnetb2_transforms(img).unsqueeze(0)
40
+
41
+ # Put model into evaluation mode and turn on inference mode
42
+ effnetb2.eval()
43
+ with torch.inference_mode():
44
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
45
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
46
+
47
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
48
+ pred_labels_and_probs = {
49
+ class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
50
+ }
51
+
52
+ # Calculate the prediction time
53
+ pred_time = round(timer() - start_time, 5)
54
+
55
+ # Return the prediction dictionary and prediction time
56
+ return pred_labels_and_probs, pred_time
57
+
58
+
59
+ ### 4. Gradio app ###
60
+
61
+ # Create title, description and article strings
62
+ title = "FoodVision Big 🍔👁"
63
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
64
+ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
65
+
66
+ # Create examples list from "examples/" directory
67
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
68
+
69
+ # Create Gradio interface
70
+ demo = gr.Interface(
71
+ fn=predict,
72
+ inputs=gr.Image(type="pil"),
73
+ outputs=[
74
+ gr.Label(num_top_classes=3, label="Predictions"),
75
+ gr.Number(label="Prediction time (s)"),
76
+ ],
77
+ examples=example_list,
78
+ title=title,
79
+ description=description,
80
+ article=article,
81
+ )
82
+
83
+ # Launch the app!
84
+ demo.launch(share=True)
class_names.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apple pie
2
+ Baby back ribs
3
+ Baklava
4
+ Beef carpaccio
5
+ Beef tartare
6
+ Beet salad
7
+ Beignets
8
+ Bibimbap
9
+ Bread pudding
10
+ Breakfast burrito
11
+ Bruschetta
12
+ Caesar salad
13
+ Cannoli
14
+ Caprese salad
15
+ Carrot cake
16
+ Ceviche
17
+ Cheese plate
18
+ Cheesecake
19
+ Chicken curry
20
+ Chicken quesadilla
21
+ Chicken wings
22
+ Chocolate cake
23
+ Chocolate mousse
24
+ Churros
25
+ Clam chowder
26
+ Club sandwich
27
+ Crab cakes
28
+ Creme brulee
29
+ Croque madame
30
+ Cup cakes
31
+ Deviled eggs
32
+ Donuts
33
+ Dumplings
34
+ Edamame
35
+ Eggs benedict
36
+ Escargots
37
+ Falafel
38
+ Filet mignon
39
+ Fish and chips
40
+ Foie gras
41
+ French fries
42
+ French onion soup
43
+ French toast
44
+ Fried calamari
45
+ Fried rice
46
+ Frozen yogurt
47
+ Garlic bread
48
+ Gnocchi
49
+ Greek salad
50
+ Grilled cheese sandwich
51
+ Grilled salmon
52
+ Guacamole
53
+ Gyoza
54
+ Hamburger
55
+ Hot and sour soup
56
+ Hot dog
57
+ Huevos rancheros
58
+ Hummus
59
+ Ice cream
60
+ Lasagna
61
+ Lobster bisque
62
+ Lobster roll sandwich
63
+ Macaroni and cheese
64
+ Macarons
65
+ Miso soup
66
+ Mussels
67
+ Nachos
68
+ Omelette
69
+ Onion rings
70
+ Oysters
71
+ Pad thai
72
+ Paella
73
+ Pancakes
74
+ Panna cotta
75
+ Peking duck
76
+ Pho
77
+ Pizza
78
+ Pork chop
79
+ Poutine
80
+ Prime rib
81
+ Pulled pork sandwich
82
+ Ramen
83
+ Ravioli
84
+ Red velvet cake
85
+ Risotto
86
+ Samosa
87
+ Sashimi
88
+ Scallops
89
+ Seaweed salad
90
+ Shrimp and grits
91
+ Spaghetti bolognese
92
+ Spaghetti carbonara
93
+ Spring rolls
94
+ Steak
95
+ Strawberry shortcake
96
+ Sushi
97
+ Tacos
98
+ Takoyaki
99
+ Tiramisu
100
+ Tuna tartare
101
+ Waffles
examples/gyoza.jpg ADDED
examples/pizza.jpg ADDED
examples/poutine.jpg ADDED
model.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+
7
+ def create_effnetb2_model(num_classes:int=3,
8
+ seed:int=42):
9
+ """Creates an EfficientNetB2 feature extractor model and transforms.
10
+ Args:
11
+ num_classes (int, optional): number of classes in the classifier head.
12
+ Defaults to 3.
13
+ seed (int, optional): random seed value. Defaults to 42.
14
+ Returns:
15
+ model (torch.nn.Module): EffNetB2 feature extractor model.
16
+ transforms (torchvision.transforms): EffNetB2 image transforms.
17
+ """
18
+ # Create EffNetB2 pretrained weights, transforms and model
19
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
20
+ transforms = weights.transforms()
21
+ model = torchvision.models.efficientnet_b2(weights=weights)
22
+
23
+ # Freeze all layers in base model
24
+ for param in model.parameters():
25
+ param.requires_grad = False
26
+
27
+ # Change classifier head with random seed for reproducibility
28
+ torch.manual_seed(seed)
29
+ model.classifier = nn.Sequential(
30
+ nn.Dropout(p=0.3, inplace=True),
31
+ nn.Linear(in_features=1408, out_features=num_classes),
32
+ )
33
+
34
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pandas==1.4.3
2
+ protobuf==3.19.4
3
+ tensorflow==2.9.1
4
+ numpy==1.23.1
5
+ gradio==3.4.0