Spaces:
Build error
Build error
first commit
Browse files- 09_pretrained_effnetb2_fine_tuned_food101_full_20_percent.pth +3 -0
- app.py +84 -0
- class_names.txt +101 -0
- examples/gyoza.jpg +0 -0
- examples/pizza.jpg +0 -0
- examples/poutine.jpg +0 -0
- model.py +34 -0
- requirements.txt +5 -0
09_pretrained_effnetb2_fine_tuned_food101_full_20_percent.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4abcd9124ec1b95399c2809669d00b0b9e9d25e0a11847b656fdab2b531fa8ee
|
3 |
+
size 31825353
|
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from model import create_effnetb2_model
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
from typing import Tuple, Dict
|
9 |
+
|
10 |
+
# Setup class names
|
11 |
+
with open("class_names.txt", "r") as f: # reading them in from class_names.txt
|
12 |
+
class_names = [food_name.strip() for food_name in f.readlines()]
|
13 |
+
|
14 |
+
### 2. Model and transforms preparation ###
|
15 |
+
|
16 |
+
# Create model
|
17 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
18 |
+
num_classes=101, # could also use len(class_names)
|
19 |
+
)
|
20 |
+
|
21 |
+
# Load saved weights
|
22 |
+
effnetb2.load_state_dict(
|
23 |
+
torch.load(
|
24 |
+
f="09_pretrained_effnetb2_fine_tuned_food101_full_20_percent.pth",
|
25 |
+
map_location=torch.device("cpu"), # load to CPU
|
26 |
+
)
|
27 |
+
)
|
28 |
+
|
29 |
+
### 3. Predict function ###
|
30 |
+
|
31 |
+
# Create predict function
|
32 |
+
def predict(img) -> Tuple[Dict, float]:
|
33 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
34 |
+
"""
|
35 |
+
# Start the timer
|
36 |
+
start_time = timer()
|
37 |
+
|
38 |
+
# Transform the target image and add a batch dimension
|
39 |
+
img = effnetb2_transforms(img).unsqueeze(0)
|
40 |
+
|
41 |
+
# Put model into evaluation mode and turn on inference mode
|
42 |
+
effnetb2.eval()
|
43 |
+
with torch.inference_mode():
|
44 |
+
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
45 |
+
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
46 |
+
|
47 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
48 |
+
pred_labels_and_probs = {
|
49 |
+
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
|
50 |
+
}
|
51 |
+
|
52 |
+
# Calculate the prediction time
|
53 |
+
pred_time = round(timer() - start_time, 5)
|
54 |
+
|
55 |
+
# Return the prediction dictionary and prediction time
|
56 |
+
return pred_labels_and_probs, pred_time
|
57 |
+
|
58 |
+
|
59 |
+
### 4. Gradio app ###
|
60 |
+
|
61 |
+
# Create title, description and article strings
|
62 |
+
title = "FoodVision Big 🍔👁"
|
63 |
+
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
|
64 |
+
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
65 |
+
|
66 |
+
# Create examples list from "examples/" directory
|
67 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
68 |
+
|
69 |
+
# Create Gradio interface
|
70 |
+
demo = gr.Interface(
|
71 |
+
fn=predict,
|
72 |
+
inputs=gr.Image(type="pil"),
|
73 |
+
outputs=[
|
74 |
+
gr.Label(num_top_classes=3, label="Predictions"),
|
75 |
+
gr.Number(label="Prediction time (s)"),
|
76 |
+
],
|
77 |
+
examples=example_list,
|
78 |
+
title=title,
|
79 |
+
description=description,
|
80 |
+
article=article,
|
81 |
+
)
|
82 |
+
|
83 |
+
# Launch the app!
|
84 |
+
demo.launch(share=True)
|
class_names.txt
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apple pie
|
2 |
+
Baby back ribs
|
3 |
+
Baklava
|
4 |
+
Beef carpaccio
|
5 |
+
Beef tartare
|
6 |
+
Beet salad
|
7 |
+
Beignets
|
8 |
+
Bibimbap
|
9 |
+
Bread pudding
|
10 |
+
Breakfast burrito
|
11 |
+
Bruschetta
|
12 |
+
Caesar salad
|
13 |
+
Cannoli
|
14 |
+
Caprese salad
|
15 |
+
Carrot cake
|
16 |
+
Ceviche
|
17 |
+
Cheese plate
|
18 |
+
Cheesecake
|
19 |
+
Chicken curry
|
20 |
+
Chicken quesadilla
|
21 |
+
Chicken wings
|
22 |
+
Chocolate cake
|
23 |
+
Chocolate mousse
|
24 |
+
Churros
|
25 |
+
Clam chowder
|
26 |
+
Club sandwich
|
27 |
+
Crab cakes
|
28 |
+
Creme brulee
|
29 |
+
Croque madame
|
30 |
+
Cup cakes
|
31 |
+
Deviled eggs
|
32 |
+
Donuts
|
33 |
+
Dumplings
|
34 |
+
Edamame
|
35 |
+
Eggs benedict
|
36 |
+
Escargots
|
37 |
+
Falafel
|
38 |
+
Filet mignon
|
39 |
+
Fish and chips
|
40 |
+
Foie gras
|
41 |
+
French fries
|
42 |
+
French onion soup
|
43 |
+
French toast
|
44 |
+
Fried calamari
|
45 |
+
Fried rice
|
46 |
+
Frozen yogurt
|
47 |
+
Garlic bread
|
48 |
+
Gnocchi
|
49 |
+
Greek salad
|
50 |
+
Grilled cheese sandwich
|
51 |
+
Grilled salmon
|
52 |
+
Guacamole
|
53 |
+
Gyoza
|
54 |
+
Hamburger
|
55 |
+
Hot and sour soup
|
56 |
+
Hot dog
|
57 |
+
Huevos rancheros
|
58 |
+
Hummus
|
59 |
+
Ice cream
|
60 |
+
Lasagna
|
61 |
+
Lobster bisque
|
62 |
+
Lobster roll sandwich
|
63 |
+
Macaroni and cheese
|
64 |
+
Macarons
|
65 |
+
Miso soup
|
66 |
+
Mussels
|
67 |
+
Nachos
|
68 |
+
Omelette
|
69 |
+
Onion rings
|
70 |
+
Oysters
|
71 |
+
Pad thai
|
72 |
+
Paella
|
73 |
+
Pancakes
|
74 |
+
Panna cotta
|
75 |
+
Peking duck
|
76 |
+
Pho
|
77 |
+
Pizza
|
78 |
+
Pork chop
|
79 |
+
Poutine
|
80 |
+
Prime rib
|
81 |
+
Pulled pork sandwich
|
82 |
+
Ramen
|
83 |
+
Ravioli
|
84 |
+
Red velvet cake
|
85 |
+
Risotto
|
86 |
+
Samosa
|
87 |
+
Sashimi
|
88 |
+
Scallops
|
89 |
+
Seaweed salad
|
90 |
+
Shrimp and grits
|
91 |
+
Spaghetti bolognese
|
92 |
+
Spaghetti carbonara
|
93 |
+
Spring rolls
|
94 |
+
Steak
|
95 |
+
Strawberry shortcake
|
96 |
+
Sushi
|
97 |
+
Tacos
|
98 |
+
Takoyaki
|
99 |
+
Tiramisu
|
100 |
+
Tuna tartare
|
101 |
+
Waffles
|
examples/gyoza.jpg
ADDED
examples/pizza.jpg
ADDED
examples/poutine.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
def create_effnetb2_model(num_classes:int=3,
|
8 |
+
seed:int=42):
|
9 |
+
"""Creates an EfficientNetB2 feature extractor model and transforms.
|
10 |
+
Args:
|
11 |
+
num_classes (int, optional): number of classes in the classifier head.
|
12 |
+
Defaults to 3.
|
13 |
+
seed (int, optional): random seed value. Defaults to 42.
|
14 |
+
Returns:
|
15 |
+
model (torch.nn.Module): EffNetB2 feature extractor model.
|
16 |
+
transforms (torchvision.transforms): EffNetB2 image transforms.
|
17 |
+
"""
|
18 |
+
# Create EffNetB2 pretrained weights, transforms and model
|
19 |
+
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
20 |
+
transforms = weights.transforms()
|
21 |
+
model = torchvision.models.efficientnet_b2(weights=weights)
|
22 |
+
|
23 |
+
# Freeze all layers in base model
|
24 |
+
for param in model.parameters():
|
25 |
+
param.requires_grad = False
|
26 |
+
|
27 |
+
# Change classifier head with random seed for reproducibility
|
28 |
+
torch.manual_seed(seed)
|
29 |
+
model.classifier = nn.Sequential(
|
30 |
+
nn.Dropout(p=0.3, inplace=True),
|
31 |
+
nn.Linear(in_features=1408, out_features=num_classes),
|
32 |
+
)
|
33 |
+
|
34 |
+
return model, transforms
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==1.4.3
|
2 |
+
protobuf==3.19.4
|
3 |
+
tensorflow==2.9.1
|
4 |
+
numpy==1.23.1
|
5 |
+
gradio==3.4.0
|