Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
### 1. Imports and class names setup
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
@@ -8,15 +8,15 @@ from timeit import default_timer as timer
|
|
8 |
from typing import Tuple, Dict
|
9 |
|
10 |
# Setup class names
|
11 |
-
with open("class_names.txt", "r") as f: # reading
|
12 |
class_names = [food_name.strip() for food_name in f.readlines()]
|
13 |
|
14 |
-
### 2. Model and transforms preparation
|
15 |
|
16 |
# Create model
|
17 |
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
18 |
-
num_classes=
|
19 |
-
)
|
20 |
|
21 |
# Load saved weights
|
22 |
effnetb2.load_state_dict(
|
@@ -56,18 +56,18 @@ def predict(img) -> Tuple[Dict, float]:
|
|
56 |
return pred_labels_and_probs, pred_time
|
57 |
|
58 |
|
59 |
-
### 4. Gradio app
|
60 |
|
61 |
-
# Create title, description and article
|
62 |
title = "FoodVision Big 🍔👁"
|
63 |
-
description = "
|
64 |
-
article = "Created
|
65 |
|
66 |
# Create examples list from "examples/" directory
|
67 |
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
68 |
|
69 |
-
# Create Gradio interface
|
70 |
-
|
71 |
fn=predict,
|
72 |
inputs=gr.Image(type="pil"),
|
73 |
outputs=[
|
@@ -80,5 +80,5 @@ demo = gr.Interface(
|
|
80 |
article=article,
|
81 |
)
|
82 |
|
83 |
-
#
|
84 |
-
|
|
|
1 |
+
### 1. Imports and class names setup
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
|
|
8 |
from typing import Tuple, Dict
|
9 |
|
10 |
# Setup class names
|
11 |
+
with open("class_names.txt", "r") as f: # reading target labels from class_names.txt
|
12 |
class_names = [food_name.strip() for food_name in f.readlines()]
|
13 |
|
14 |
+
### 2. Model and transforms preparation
|
15 |
|
16 |
# Create model
|
17 |
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
18 |
+
num_classes=len(class_names),
|
19 |
+
)
|
20 |
|
21 |
# Load saved weights
|
22 |
effnetb2.load_state_dict(
|
|
|
56 |
return pred_labels_and_probs, pred_time
|
57 |
|
58 |
|
59 |
+
### 4. Gradio app
|
60 |
|
61 |
+
# Create title, description and article
|
62 |
title = "FoodVision Big 🍔👁"
|
63 |
+
description = "A Simple Deep Learning Application which is trained on EfficientNetB2 Fine Tuned computer vision model to classify food images of [101 different classes](https://huggingface.co/spaces/Hexii/FoodVision/blob/main/class_names.txt)."
|
64 |
+
article = "Created by Ansari Abu Huzaifa , Learned at[ZTM Academy](https://www.learnpytorch.io/)"
|
65 |
|
66 |
# Create examples list from "examples/" directory
|
67 |
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
68 |
|
69 |
+
# Create Gradio interface
|
70 |
+
app = gr.Interface(
|
71 |
fn=predict,
|
72 |
inputs=gr.Image(type="pil"),
|
73 |
outputs=[
|
|
|
80 |
article=article,
|
81 |
)
|
82 |
|
83 |
+
# launch the App
|
84 |
+
app.launch()
|