adrien.aribaut-gaudin commited on
Commit
ed437ad
1 Parent(s): b548316

updating to real llama2

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. src/tools/llm.py +3 -2
app.py CHANGED
@@ -36,12 +36,12 @@ client_db = chromadb.Client()
36
 
37
  try:
38
  client_db.get_collection(name="illumio_database")
39
- llm = LlmAgent(model="TheBloke/Llama-2-7b-Chat-GPTQ")
40
  retriever = Retriever(client_db, None, "illumio_database", llmagent=llm)
41
  except:
42
  print("Database is empty")
43
  doc = Doc(path=content_en_path_real)
44
- llm = LlmAgent(model="TheBloke/Llama-2-7b-Chat-GPTQ")
45
  retriever = Retriever(client_db,doc.container,"illumio_database",llmagent=llm)
46
 
47
 
 
36
 
37
  try:
38
  client_db.get_collection(name="illumio_database")
39
+ llm = LlmAgent(model="meta-llama/Llama-2-7b")
40
  retriever = Retriever(client_db, None, "illumio_database", llmagent=llm)
41
  except:
42
  print("Database is empty")
43
  doc = Doc(path=content_en_path_real)
44
+ llm = LlmAgent(model="meta-llama/Llama-2-7b")
45
  retriever = Retriever(client_db,doc.container,"illumio_database",llmagent=llm)
46
 
47
 
src/tools/llm.py CHANGED
@@ -2,16 +2,17 @@ from langchain.llms.huggingface_pipeline import HuggingFacePipeline
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
  from langchain.chains import LLMChain
4
  from langchain.prompts import PromptTemplate
 
5
 
6
  class LlmAgent:
7
 
8
- def __init__(self, model :str = "TheBloke/Llama-2-7b-Chat-GPTQ"):
9
  self.tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True)
10
  self.model = AutoModelForCausalLM.from_pretrained(model,
11
  device_map="cuda",
12
  trust_remote_code=False, #A CHANGER SELON LES MODELES, POUR CELUI DE LAMA2 CA MARCHE (celui par default)
13
  revision="main")
14
- self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
15
 
16
  def generate_paragraph(self, query: str, context: {}, histo: [(str, str)], language='fr') -> str:
17
  locallm = HuggingFacePipeline(pipeline=self.pipe)
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
  from langchain.chains import LLMChain
4
  from langchain.prompts import PromptTemplate
5
+ import torch
6
 
7
  class LlmAgent:
8
 
9
+ def __init__(self, model :str = "meta-llama/Llama-2-7b"):
10
  self.tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True)
11
  self.model = AutoModelForCausalLM.from_pretrained(model,
12
  device_map="cuda",
13
  trust_remote_code=False, #A CHANGER SELON LES MODELES, POUR CELUI DE LAMA2 CA MARCHE (celui par default)
14
  revision="main")
15
+ self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer,torch_dtype=torch.float16)
16
 
17
  def generate_paragraph(self, query: str, context: {}, histo: [(str, str)], language='fr') -> str:
18
  locallm = HuggingFacePipeline(pipeline=self.pipe)