adrien.aribaut-gaudin
test from page 9 to 13
62d4365
raw
history blame
8.92 kB
# # To read the PDF
# import PyPDF2
# # To analyze the PDF layout and extract text
# from pdfminer.high_level import extract_pages, extract_text
# from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
# # To extract text from tables in PDF
# import pdfplumber
# # To extract the images from the PDFs
# from PIL import Image
# from pdf2image import convert_from_path
# # To perform OCR to extract text from images
# import pytesseract
# # To remove the additional created files
# import os
# def text_extraction(element):
# # Extracting the text from the in-line text element
# line_text = element.get_text()
# # Find the formats of the text
# # Initialize the list with all the formats that appeared in the line of text
# line_formats = []
# for text_line in element:
# if isinstance(text_line, LTTextContainer):
# # Iterating through each character in the line of text
# for character in text_line:
# if isinstance(character, LTChar):
# # Append the font name of the character
# line_formats.append(character.fontname)
# # Append the font size of the character
# line_formats.append(character.size)
# # Find the unique font sizes and names in the line
# format_per_line = list(set(line_formats))
# # Return a tuple with the text in each line along with its format
# return (line_text, format_per_line)
# def crop_image(element, pageObj):
# # Get the coordinates to crop the image from the PDF
# [image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1]
# # Crop the page using coordinates (left, bottom, right, top)
# pageObj.mediabox.lower_left = (image_left, image_bottom)
# pageObj.mediabox.upper_right = (image_right, image_top)
# # Save the cropped page to a new PDF
# cropped_pdf_writer = PyPDF2.PdfWriter()
# cropped_pdf_writer.add_page(pageObj)
# # Save the cropped PDF to a new file
# with open('cropped_image.pdf', 'wb') as cropped_pdf_file:
# cropped_pdf_writer.write(cropped_pdf_file)
# # Create a function to convert the PDF to images
# def convert_to_images(input_file,):
# images = convert_from_path(input_file,poppler_path=r'C:\Program Files\poppler-23.08.0\Library\bin')
# image = images[0]
# output_file = "PDF_image.png"
# image.save(output_file, "PNG")
# # Create a function to read text from images
# def image_to_text(image_path):
# # Read the image
# img = Image.open(image_path)
# # Extract the text from the image
# text = pytesseract.image_to_string(img)
# return text
# def extract_table(pdf_path, page_num, table_num):
# # Open the pdf file
# pdf = pdfplumber.open(pdf_path)
# # Find the examined page
# table_page = pdf.pages[page_num]
# # Extract the appropriate table
# table = table_page.extract_tables()[table_num]
# return table
# # Convert table into the appropriate format
# def table_converter(table):
# table_string = ''
# # Iterate through each row of the table
# for row_num in range(len(table)):
# row = table[row_num]
# # Remove the line breaker from the wrapped texts
# cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row]
# # Convert the table into a string
# table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n')
# # Removing the last line break
# table_string = table_string[:-1]
# return table_string
# def pdf_manager(pdf_path):
# # create a PDF file object
# pdfFileObj = open(pdf_path, 'rb')
# # create a PDF reader object
# pdfReaded = PyPDF2.PdfReader(pdfFileObj)
# # Create the dictionary to extract text from each image
# text_per_page = {}
# # We extract the pages from the PDF
# for pagenum, page in enumerate(extract_pages(pdf_path)):
# # Initialize the variables needed for the text extraction from the page
# pageObj = pdfReaded.pages[pagenum]
# page_text = []
# line_format = []
# text_from_images = []
# text_from_tables = []
# page_content = []
# # Initialize the number of the examined tables
# table_num = 0
# first_element= True
# table_extraction_flag= False
# # Open the pdf file
# pdf = pdfplumber.open(pdf_path)
# # Find the examined page
# page_tables = pdf.pages[pagenum]
# # Find the number of tables on the page
# tables = page_tables.find_tables()
# # Find all the elements
# page_elements = [(element.y1, element) for element in page._objs]
# # Sort all the elements as they appear in the page
# page_elements.sort(key=lambda a: a[0], reverse=True)
# # Find the elements that composed a page
# for i,component in enumerate(page_elements):
# # Extract the position of the top side of the element in the PDF
# pos= component[0]
# # Extract the element of the page layout
# element = component[1]
# # Check if the element is a text element
# if isinstance(element, LTTextContainer):
# # Check if the text appeared in a table
# if table_extraction_flag == False:
# # Use the function to extract the text and format for each text element
# (line_text, format_per_line) = text_extraction(element)
# # Append the text of each line to the page text
# page_text.append(line_text)
# # Append the format for each line containing text
# line_format.append(format_per_line)
# page_content.append(line_text)
# else:
# # Omit the text that appeared in a table
# pass
# # Check the elements for images
# if isinstance(element, LTFigure):
# # Crop the image from the PDF
# crop_image(element, pageObj)
# # Convert the cropped pdf to an image
# convert_to_images('cropped_image.pdf')
# # Extract the text from the image
# image_text = image_to_text('PDF_image.png')
# text_from_images.append(image_text)
# page_content.append(image_text)
# # Add a placeholder in the text and format lists
# page_text.append('image')
# line_format.append('image')
# # Check the elements for tables
# if isinstance(element, LTRect):
# # If the first rectangular element
# if first_element == True and (table_num+1) <= len(tables):
# # Find the bounding box of the table
# lower_side = page.bbox[3] - tables[table_num].bbox[3]
# upper_side = element.y1
# # Extract the information from the table
# table = extract_table(pdf_path, pagenum, table_num)
# # Convert the table information in structured string format
# table_string = table_converter(table)
# # Append the table string into a list
# text_from_tables.append(table_string)
# page_content.append(table_string)
# # Set the flag as True to avoid the content again
# table_extraction_flag = True
# # Make it another element
# first_element = False
# # Add a placeholder in the text and format lists
# page_text.append('table')
# line_format.append('table')
# # Check if we already extracted the tables from the page
# if element.y0 >= lower_side and element.y1 <= upper_side:
# pass
# elif not isinstance(page_elements[i+1][1], LTRect):
# table_extraction_flag = False
# first_element = True
# table_num+=1
# # Create the key of the dictionary
# dctkey = 'Page_'+str(pagenum)
# # Add the list of list as the value of the page key
# text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
# # Closing the pdf file object
# pdfFileObj.close()
# # Deleting the additional files created
# os.remove('cropped_image.pdf')
# os.remove('PDF_image.png')
# # Display the content of the page
# result = ''.join(text_per_page['Page_0'][4])
# print(result)