Update app.py
Browse files
app.py
CHANGED
|
@@ -125,20 +125,32 @@ class DicomAnalyzer:
|
|
| 125 |
if self.current_image is None:
|
| 126 |
return None, "No image loaded"
|
| 127 |
|
| 128 |
-
# Get raw image data
|
| 129 |
-
raw_image = self.current_image
|
| 130 |
-
|
| 131 |
-
# Get
|
|
|
|
|
|
|
|
|
|
| 132 |
clicked_x = evt.index[0]
|
| 133 |
clicked_y = evt.index[1]
|
| 134 |
-
|
| 135 |
-
# Convert to original image coordinates
|
| 136 |
-
x = int((clicked_x + self.pan_x) / self.zoom_factor)
|
| 137 |
-
y = int((clicked_y + self.pan_y) / self.zoom_factor)
|
| 138 |
|
| 139 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
mask = np.zeros_like(raw_image, dtype=np.uint8)
|
| 141 |
-
y_indices, x_indices = np.ogrid[:
|
| 142 |
radius = self.circle_diameter / 2
|
| 143 |
distance_from_center = np.sqrt(
|
| 144 |
(x_indices - x)**2 + (y_indices - y)**2
|
|
@@ -148,17 +160,18 @@ class DicomAnalyzer:
|
|
| 148 |
# Get ROI pixels from raw image
|
| 149 |
roi_pixels = raw_image[mask == 1]
|
| 150 |
|
| 151 |
-
# Calculate statistics
|
| 152 |
pixel_spacing = float(self.dicom_data.PixelSpacing[0])
|
| 153 |
area_pixels = np.sum(mask)
|
| 154 |
area_mm2 = area_pixels * (pixel_spacing ** 2)
|
| 155 |
|
| 156 |
-
#
|
| 157 |
mean = np.mean(roi_pixels)
|
| 158 |
stddev = np.std(roi_pixels)
|
| 159 |
min_val = np.min(roi_pixels)
|
| 160 |
max_val = np.max(roi_pixels)
|
| 161 |
|
|
|
|
| 162 |
result = {
|
| 163 |
'Area (mm²)': f"{area_mm2:.3f}",
|
| 164 |
'Mean': f"{mean:.3f}",
|
|
@@ -170,9 +183,14 @@ class DicomAnalyzer:
|
|
| 170 |
|
| 171 |
self.results.append(result)
|
| 172 |
self.marks.append((x, y, self.circle_diameter))
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
return self.update_display(), self.format_results()
|
| 178 |
except Exception as e:
|
|
|
|
| 125 |
if self.current_image is None:
|
| 126 |
return None, "No image loaded"
|
| 127 |
|
| 128 |
+
# Get raw image data
|
| 129 |
+
raw_image = self.current_image
|
| 130 |
+
|
| 131 |
+
# Get image dimensions
|
| 132 |
+
height, width = raw_image.shape[:2]
|
| 133 |
+
|
| 134 |
+
# Calculate coordinates
|
| 135 |
clicked_x = evt.index[0]
|
| 136 |
clicked_y = evt.index[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
# Adjust coordinates for ImageJ compatibility
|
| 139 |
+
x = int(clicked_x)
|
| 140 |
+
y = int(clicked_y)
|
| 141 |
+
|
| 142 |
+
if self.zoom_factor != 1.0:
|
| 143 |
+
# Adjust for zoom and pan
|
| 144 |
+
x = int((clicked_x + self.pan_x) / self.zoom_factor)
|
| 145 |
+
y = int((clicked_y + self.pan_y) / self.zoom_factor)
|
| 146 |
+
|
| 147 |
+
# Ensure coordinates are within bounds
|
| 148 |
+
x = max(0, min(x, width-1))
|
| 149 |
+
y = max(0, min(y, height-1))
|
| 150 |
+
|
| 151 |
+
# Create circular mask
|
| 152 |
mask = np.zeros_like(raw_image, dtype=np.uint8)
|
| 153 |
+
y_indices, x_indices = np.ogrid[:height, :width]
|
| 154 |
radius = self.circle_diameter / 2
|
| 155 |
distance_from_center = np.sqrt(
|
| 156 |
(x_indices - x)**2 + (y_indices - y)**2
|
|
|
|
| 160 |
# Get ROI pixels from raw image
|
| 161 |
roi_pixels = raw_image[mask == 1]
|
| 162 |
|
| 163 |
+
# Calculate statistics using raw values
|
| 164 |
pixel_spacing = float(self.dicom_data.PixelSpacing[0])
|
| 165 |
area_pixels = np.sum(mask)
|
| 166 |
area_mm2 = area_pixels * (pixel_spacing ** 2)
|
| 167 |
|
| 168 |
+
# Use raw pixel values for statistics
|
| 169 |
mean = np.mean(roi_pixels)
|
| 170 |
stddev = np.std(roi_pixels)
|
| 171 |
min_val = np.min(roi_pixels)
|
| 172 |
max_val = np.max(roi_pixels)
|
| 173 |
|
| 174 |
+
# Store results
|
| 175 |
result = {
|
| 176 |
'Area (mm²)': f"{area_mm2:.3f}",
|
| 177 |
'Mean': f"{mean:.3f}",
|
|
|
|
| 183 |
|
| 184 |
self.results.append(result)
|
| 185 |
self.marks.append((x, y, self.circle_diameter))
|
| 186 |
+
|
| 187 |
+
# Debug information
|
| 188 |
+
print(f"Clicked at: ({clicked_x}, {clicked_y})")
|
| 189 |
+
print(f"Adjusted to: ({x}, {y})")
|
| 190 |
+
print(f"Zoom factor: {self.zoom_factor}")
|
| 191 |
+
print(f"Pan: ({self.pan_x}, {self.pan_y})")
|
| 192 |
+
print(f"ROI Statistics: Mean={mean:.3f}, StdDev={stddev:.3f}")
|
| 193 |
+
print(f"Min={min_val:.3f}, Max={max_val:.3f}")
|
| 194 |
|
| 195 |
return self.update_display(), self.format_results()
|
| 196 |
except Exception as e:
|