Henry96 commited on
Commit
91b8d6e
1 Parent(s): 51a30a6

initial app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -0
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
3
+ import requests
4
+ from PIL import Image
5
+ import torch
6
+
7
+ # 下载示例图片
8
+ torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png')
9
+ torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png')
10
+
11
+ # 加载模型和处理器
12
+ model = PaliGemmaForConditionalGeneration.from_pretrained("./ahmed-masry/chartgemma")
13
+ processor = AutoProcessor.from_pretrained("./ahmed-masry/chartgemma")
14
+
15
+ def predict(image, input_text):
16
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+ model.to(device)
18
+
19
+ image = image.convert("RGB")
20
+
21
+ inputs = processor(text=input_text, images=image, return_tensors="pt")
22
+ inputs = {k: v.to(device) for k, v in inputs.items()}
23
+
24
+ prompt_length = inputs['input_ids'].shape[1]
25
+
26
+ # 生成文本
27
+ generate_ids = model.generate(**inputs, max_new_tokens=512)
28
+ output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
29
+
30
+ return output_text
31
+
32
+ examples = [
33
+ ["chart_example_1.png", "Describe the trend of the mortality rates for children before age 5"],
34
+ ["chart_example_2.png", "What is the share of respondents who prefer Facebook Messenger in the 30-59 age group?"]
35
+ ]
36
+
37
+ title = "ChartGemma 模型的互动式 Gradio 演示"
38
+
39
+ with gr.Blocks(css="theme.css") as demo:
40
+ gr.Markdown(f"# {title}")
41
+
42
+ with gr.Row():
43
+ with gr.Column():
44
+ image = gr.Image(type="pil", label="图表图像")
45
+ input_prompt = gr.Textbox(label="输入")
46
+
47
+ with gr.Column():
48
+ model_output = gr.Textbox(label="输出")
49
+
50
+ gr.Examples(examples=examples, inputs=[image, input_prompt])
51
+
52
+ submit_button = gr.Button("运行")
53
+ submit_button.click(predict, inputs=[image, input_prompt], outputs=model_output)
54
+
55
+ demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
56
+