Spaces:
Sleeping
Sleeping
initial app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# 下载示例图片
|
8 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png')
|
9 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png')
|
10 |
+
|
11 |
+
# 加载模型和处理器
|
12 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("./ahmed-masry/chartgemma")
|
13 |
+
processor = AutoProcessor.from_pretrained("./ahmed-masry/chartgemma")
|
14 |
+
|
15 |
+
def predict(image, input_text):
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model.to(device)
|
18 |
+
|
19 |
+
image = image.convert("RGB")
|
20 |
+
|
21 |
+
inputs = processor(text=input_text, images=image, return_tensors="pt")
|
22 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
23 |
+
|
24 |
+
prompt_length = inputs['input_ids'].shape[1]
|
25 |
+
|
26 |
+
# 生成文本
|
27 |
+
generate_ids = model.generate(**inputs, max_new_tokens=512)
|
28 |
+
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
29 |
+
|
30 |
+
return output_text
|
31 |
+
|
32 |
+
examples = [
|
33 |
+
["chart_example_1.png", "Describe the trend of the mortality rates for children before age 5"],
|
34 |
+
["chart_example_2.png", "What is the share of respondents who prefer Facebook Messenger in the 30-59 age group?"]
|
35 |
+
]
|
36 |
+
|
37 |
+
title = "ChartGemma 模型的互动式 Gradio 演示"
|
38 |
+
|
39 |
+
with gr.Blocks(css="theme.css") as demo:
|
40 |
+
gr.Markdown(f"# {title}")
|
41 |
+
|
42 |
+
with gr.Row():
|
43 |
+
with gr.Column():
|
44 |
+
image = gr.Image(type="pil", label="图表图像")
|
45 |
+
input_prompt = gr.Textbox(label="输入")
|
46 |
+
|
47 |
+
with gr.Column():
|
48 |
+
model_output = gr.Textbox(label="输出")
|
49 |
+
|
50 |
+
gr.Examples(examples=examples, inputs=[image, input_prompt])
|
51 |
+
|
52 |
+
submit_button = gr.Button("运行")
|
53 |
+
submit_button.click(predict, inputs=[image, input_prompt], outputs=model_output)
|
54 |
+
|
55 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
56 |
+
|