Spaces:
Sleeping
Sleeping
first commit to HF spaces.
Browse files- .gitattributes +1 -0
- .gitignore +140 -0
- README.md +4 -4
- SNOMED-CT_Assistant.py +150 -0
- pages/Vector DB of SNOMED-CT.py +59 -0
- requirements.txt +8 -0
- snomed-entity-challenge.csv +0 -0
- snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/data_level0.bin +3 -0
- snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/header.bin +3 -0
- snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/index_metadata.pickle +3 -0
- snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/length.bin +3 -0
- snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/link_lists.bin +3 -0
- snomed_ct_id_term_1410k/chroma.sqlite3 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
98 |
+
__pypackages__/
|
99 |
+
|
100 |
+
# Celery stuff
|
101 |
+
celerybeat-schedule
|
102 |
+
celerybeat.pid
|
103 |
+
|
104 |
+
# SageMath parsed files
|
105 |
+
*.sage.py
|
106 |
+
|
107 |
+
# Environments
|
108 |
+
.env
|
109 |
+
.venv
|
110 |
+
env/
|
111 |
+
venv/
|
112 |
+
ENV/
|
113 |
+
env.bak/
|
114 |
+
venv.bak/
|
115 |
+
|
116 |
+
# Spyder project settings
|
117 |
+
.spyderproject
|
118 |
+
.spyproject
|
119 |
+
|
120 |
+
# Rope project settings
|
121 |
+
.ropeproject
|
122 |
+
|
123 |
+
# mkdocs documentation
|
124 |
+
/site
|
125 |
+
|
126 |
+
# mypy
|
127 |
+
.mypy_cache/
|
128 |
+
.dmypy.json
|
129 |
+
dmypy.json
|
130 |
+
|
131 |
+
# Pyre type checker
|
132 |
+
.pyre/
|
133 |
+
|
134 |
+
# pytype static type analyzer
|
135 |
+
.pytype/
|
136 |
+
|
137 |
+
# Cython debug symbols
|
138 |
+
cython_debug/
|
139 |
+
|
140 |
+
# End of https://mrkandreev.name/snippets/gitignore-generator/#Python
|
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
---
|
2 |
title: Snomed Ct Assistant
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.34.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
1 |
---
|
2 |
title: Snomed Ct Assistant
|
3 |
+
emoji: 🏥
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.34.0
|
8 |
+
app_file: SNOMED-CT_Assistant.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
SNOMED-CT_Assistant.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import streamlit as st
|
4 |
+
from openai import OpenAI
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
|
9 |
+
# configure sqlite3
|
10 |
+
# __import__('pysqlite3')
|
11 |
+
# import sys
|
12 |
+
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
13 |
+
|
14 |
+
st.set_page_config(layout="wide")
|
15 |
+
|
16 |
+
remote = True
|
17 |
+
|
18 |
+
if remote:
|
19 |
+
with st.sidebar:
|
20 |
+
if 'OPENAI_API_TOKEN' in st.secrets:
|
21 |
+
st.success('API key already provided!', icon='✅')
|
22 |
+
openai_api_key = st.secrets['OPENAI_API_TOKEN']
|
23 |
+
else:
|
24 |
+
load_dotenv()
|
25 |
+
openai_api_key = os.environ.get("OpenAI_API_KEY")
|
26 |
+
|
27 |
+
st.title("🏥 SNOMED-CT Assistant")
|
28 |
+
st.caption("👩⚕️ A smart medical assistant with SNOMED-CT knowledge.")
|
29 |
+
|
30 |
+
# System prompt
|
31 |
+
system_prompt = """You are a medical expert with rich experience in SNOMED-CT professional knowledge.
|
32 |
+
You are skilled at assisting medical professionals and answering questions in the medical field. You are patient, helpful and professional.
|
33 |
+
Please refuse to answer inquiries and requests unrelated to the medical field, in order to maintain professionalism in medicine.
|
34 |
+
As an experienced professional, you possess deep expertise in the field of SNOMED CT Entity Linking.
|
35 |
+
You have a thorough understanding of the relevant workflows and critical aspects involved, encompassing:
|
36 |
+
- Processing electronic medical records (EHRs), Adept handling of electronic medical record (EMR) data processing
|
37 |
+
- Entity Identification, Proficient entity recognition capabilities, identifying and extracting relevant medical concepts from unstructured text
|
38 |
+
- Skilled Entity Mapping, accurately linking identified entities to their corresponding SNOMED CT concepts
|
39 |
+
- Seamless integration and output of clinical terminology, ensuring the accurate representation and utilization of standardized medical language
|
40 |
+
- Patiently and professionally respond to all SNOMED CT related inquiries, even if the user repeats questions.
|
41 |
+
- Demonstrate deep expertise in the standard SNOMED CT Entity Linking workflow, which involves:
|
42 |
+
1. Performing Entity Identification to extract relevant medical terminology from the input.
|
43 |
+
2. Conducting Entity Mapping to link the identified entities to their corresponding SNOMED CT concepts.
|
44 |
+
- Present the results in a tabular format only with the following 3 columns: "Identified Entity", "SNOMED CT Concept IDs", "SNOMED CT Descriptions".
|
45 |
+
|
46 |
+
Here is the practical entity linking process example:
|
47 |
+
- the input text in EHRs: "Patient referred for a biopsy to investigate potential swelling in upper larynx."
|
48 |
+
- the identified entity: "biopsy", "larynx"
|
49 |
+
- the mapped SNOMED CT concepts id & descriptions: "274317003 | Laryngoscopic biopsy larynx (procedure)", "4596009 | Laryngeal structure (body structure)"
|
50 |
+
|
51 |
+
List out as many potential SNOMED entities as possible from the original medical text description,
|
52 |
+
including Diseases, Diagnoses, Clinical Findings (like Signs and Symptoms),
|
53 |
+
Procedures (Surgical, Therapeutic, Diagnostic, Nursing), Specimen Types, Living Organisms,
|
54 |
+
Observables (for example heart rate), Physical Objects and Forces,
|
55 |
+
Chemicals (including the chemicals used in drug preparations), Drugs (pharmaceutical products),
|
56 |
+
Human Anatomy (body structures, organisms), Physiological Processes and Functions,
|
57 |
+
Patients' Occupations, Patients' Social Contexts (e.g., religion and ethnicity), and various other types from the SNOMED CT standard.
|
58 |
+
Numbers or units related symbols are not included in this range and can be ignored.
|
59 |
+
|
60 |
+
Output Format Requirements (Must follow):
|
61 |
+
- Present the results in a tabular format with the following 3 columns only: "Identified Entity", "SNOMED CT Concept IDs", and "SNOMED CT Descriptions". Do not arbitrarily replace the column names, as that would lead to unclear output.
|
62 |
+
- The table should be easy to read and understand, with each row displaying the identified medical entity, its corresponding SNOMED CT concept ID, and the full SNOMED CT description.
|
63 |
+
- Ensure the formatting and organization of the table is clean and professional, optimized for the user's ease of reference.
|
64 |
+
|
65 |
+
Your comprehensive knowledge and mastery of these key components make you an invaluable asset in the realm of biomedical natural language processing and knowledge extraction.
|
66 |
+
With your specialized expertise, you are able to navigate the complexities of SNOMED CT Entity Linking with ease, delivering accurate and reliable results that support various healthcare and research applications.
|
67 |
+
When answering questions, except for the use of English for medical-related terminology, always respond in Traditional Chinese (zh-TW).
|
68 |
+
If there are any SNOMED-CT related medical professional terms, please provide the original text in parentheses afterwards."""
|
69 |
+
|
70 |
+
|
71 |
+
# Func: generate random med text
|
72 |
+
raw_text_df = pd.read_csv('snomed-entity-challenge.csv')
|
73 |
+
|
74 |
+
def random_med_text(text_df):
|
75 |
+
rows = len(text_df['text'])
|
76 |
+
index = random.randint(0, rows)
|
77 |
+
raw_text = text_df["text"][index]
|
78 |
+
raw_text_spilt = raw_text.split('###TEXT:')
|
79 |
+
raw_text_spilt_2 = raw_text_spilt[1].split('###RESPONSE:')
|
80 |
+
human = raw_text_spilt[0]
|
81 |
+
med_text = raw_text_spilt_2[0]
|
82 |
+
response = raw_text_spilt_2[1]
|
83 |
+
return index, human, med_text, response
|
84 |
+
|
85 |
+
|
86 |
+
# Func: Gen Medical Prompt Example
|
87 |
+
def generate_med_prompt(medical_text):
|
88 |
+
return f"""請協助我做電子病歷 (Electronic Health Record, EHR) 的 SNOMED-CT Entity Linking 的處理, 這是原本的病歷文字: \n {medical_text} \n """
|
89 |
+
|
90 |
+
# test_prompt = """請協助我做 EHR 的 SNOMED CT Entity Linking 的處理, 這是原本的病歷文字:
|
91 |
+
# "Patient referred for a biopsy to investigate potential swelling in upper larynx."
|
92 |
+
# ,首先做 Entity Identification,列出醫學相關術語片段,接著做 Entity Mapping,將對應的 SNOMED CT 術語列出。
|
93 |
+
# 輸出格式用表格,欄位是 "identified entity", "SNOMED CT concept ids", "SNOMED CT descriptions"。"""
|
94 |
+
|
95 |
+
client = OpenAI(api_key=openai_api_key)
|
96 |
+
model_tag = "gpt-3.5-turbo"
|
97 |
+
|
98 |
+
def chat_input(prompt):
|
99 |
+
# with st.sidebar:
|
100 |
+
# st.write("You are talking with: ", model_tag)
|
101 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
102 |
+
st.chat_message("user").write(prompt)
|
103 |
+
with st.spinner("Thinking..."):
|
104 |
+
response = client.chat.completions.create(
|
105 |
+
model=model_tag, messages=st.session_state.messages, temperature=0.5)
|
106 |
+
msg = response.choices[0].message.content
|
107 |
+
st.session_state.messages.append({"role": "assistant", "content": msg})
|
108 |
+
st.chat_message("assistant").write(msg)
|
109 |
+
|
110 |
+
if "messages" not in st.session_state:
|
111 |
+
st.session_state["messages"] = [{"role": "system", "content": system_prompt},
|
112 |
+
{"role": "assistant", "content": "👩⚕️ 您好,我是您的專業醫學助理。請問有任何我可以協助你的地方嗎?"}]
|
113 |
+
|
114 |
+
for msg in st.session_state.messages:
|
115 |
+
if msg["role"] == "system":
|
116 |
+
continue
|
117 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
118 |
+
|
119 |
+
if prompt := st.chat_input():
|
120 |
+
if not openai_api_key:
|
121 |
+
st.info("Please add your OpenAI API key to continue.")
|
122 |
+
st.stop()
|
123 |
+
|
124 |
+
chat_input(prompt)
|
125 |
+
# st.session_state.messages.append({"role": "user", "content": prompt})
|
126 |
+
# st.chat_message("user").write(prompt)
|
127 |
+
# with st.spinner("Thinking..."):
|
128 |
+
# response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
|
129 |
+
# msg = response.choices[0].message.content
|
130 |
+
# st.session_state.messages.append({"role": "assistant", "content": msg})
|
131 |
+
# st.chat_message("assistant").write(msg)
|
132 |
+
|
133 |
+
if st.sidebar.button("Example Input",type="primary"):
|
134 |
+
med_prompt = generate_med_prompt("Patient referred for a biopsy to investigate potential swelling in upper larynx.")
|
135 |
+
chat_input(med_prompt)
|
136 |
+
|
137 |
+
|
138 |
+
if st.sidebar.button("Random Input",type="primary"):
|
139 |
+
index, human, med_text, response = random_med_text(raw_text_df)
|
140 |
+
response = response.replace(","," \n")
|
141 |
+
med_prompt = generate_med_prompt(med_text)
|
142 |
+
chat_input(med_prompt)
|
143 |
+
st.sidebar.write(f"[Random Text](https://huggingface.co/datasets/JaimeML/snomed-entity-challenge) Index: {index}")
|
144 |
+
st.sidebar.markdown(f"Ref Entity: \n {response}")
|
145 |
+
|
146 |
+
|
147 |
+
# model_tag = st.sidebar.selectbox(
|
148 |
+
# "Which model do you want to chat with?",
|
149 |
+
# ("gpt-4o", "gpt-3.5-turbo")
|
150 |
+
# )
|
pages/Vector DB of SNOMED-CT.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from timeit import default_timer as timer
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import chromadb
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# configure sqlite3
|
9 |
+
# __import__('pysqlite3')
|
10 |
+
# import sys
|
11 |
+
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
12 |
+
|
13 |
+
st.set_page_config(layout="wide")
|
14 |
+
|
15 |
+
# App Title
|
16 |
+
st.title("📚 Semantic Search with Vector Database of SNOMED-CT 💡")
|
17 |
+
st.caption("🔍 Search any SNOMED-CT relate decription & concept with natural language.")
|
18 |
+
st.sidebar.title("🔍 Search Setting")
|
19 |
+
query_number = st.sidebar.slider("Query Numbers", 5, 30, 10)
|
20 |
+
st.markdown("##### ➡️⌨️ Please input some medical description here, e.g. \"insomnia two nights a week.\", \"COPD\", \"Degenerative Joint Disease\"")
|
21 |
+
query_text = st.text_input("Input: any medical description snippet","Type-2 Diabetes")
|
22 |
+
|
23 |
+
# Chroma DB Client
|
24 |
+
chroma_client = chromadb.PersistentClient(path="snomed_ct_id_term_1410k")
|
25 |
+
collection = chroma_client.get_or_create_collection(name="snomed_ct_id_term")
|
26 |
+
start = 1.0
|
27 |
+
end = 1.1
|
28 |
+
st.markdown("##### ➡️Chroma DB will return " + str(query_number)
|
29 |
+
+ " related instances from " + str(collection.count()) + " collections.")
|
30 |
+
# st.warning("Due to the SQLite [file size limit on GitHub](https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-git-large-file-storage), this testing only query from 500k SNOMED-CT instances.", icon="🚨")
|
31 |
+
|
32 |
+
|
33 |
+
# Func: query chrome_db
|
34 |
+
def query_chroma_db(query_text, query_number):
|
35 |
+
results = collection.query(
|
36 |
+
query_texts=[query_text],
|
37 |
+
n_results=query_number,
|
38 |
+
include=["distances", "metadatas", "documents"]
|
39 |
+
)
|
40 |
+
return results
|
41 |
+
|
42 |
+
# Func: chrome_db_result to df
|
43 |
+
def get_df_from_chroma_results(results):
|
44 |
+
result_dict = {'ids': results['ids'][0], 'concept_ids': [ str(sub['concept_id']) for sub in results['metadatas'][0] ], 'distances': results['distances'][0], 'documents': results['documents'][0]}
|
45 |
+
df = pd.DataFrame(result_dict)
|
46 |
+
return df
|
47 |
+
|
48 |
+
start = timer()
|
49 |
+
results = query_chroma_db(query_text, query_number)
|
50 |
+
end = timer()
|
51 |
+
st.markdown("###### ➡️ Query Time : {: .6f} seconds.".format(end - start))
|
52 |
+
st.divider()
|
53 |
+
|
54 |
+
results_df = get_df_from_chroma_results(results)
|
55 |
+
|
56 |
+
#displaying the dataframe as an interactive object
|
57 |
+
st.markdown("### 📊 Similar Search Results from Chroma Vector DB")
|
58 |
+
st.dataframe(results_df, 1000, 500)
|
59 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
openai
|
4 |
+
numpy
|
5 |
+
chromadb
|
6 |
+
python-dotenv
|
7 |
+
pysqlite3-binary
|
8 |
+
|
snomed-entity-challenge.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6052af3bc565baf830088dd4c367f3e260ddbb2cf7dfac904fb483aa64f6b31
|
3 |
+
size 2363160000
|
snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dc4275c3ac7eb47b6540b51430e9f85f50a3ebda23a824a9afa7906a02946db
|
3 |
+
size 100
|
snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/index_metadata.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25b66beb13495b59f604b58531f4b2ca7a4407ee9555c6d33a8faf2913dc420b
|
3 |
+
size 52473273
|
snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2582aa1cc6e61c9b0b3da6575206c81c03377e13cf96fa0eb7ca509bbd1f2692
|
3 |
+
size 5640000
|
snomed_ct_id_term_1410k/c8390385-a5b9-4ff6-89cd-f8bf8a760fbb/link_lists.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91a660d0f12b9111f4217c2024c4b75f810fbf4c6beae03cd9576891096b06a4
|
3 |
+
size 12018944
|
snomed_ct_id_term_1410k/chroma.sqlite3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dbcfc18f1d97ee8184c664105863bc8be1d8b6c376aca94dea6cdb5e9b81bf1
|
3 |
+
size 3590983680
|