Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,8 +16,9 @@ from threading import Thread
|
|
16 |
# model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)
|
17 |
|
18 |
model_name_or_path = "scutcyr/BianQue-2"
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,trust_remote_code=True)
|
20 |
-
|
21 |
|
22 |
# using CUDA for an optimal experience
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -43,17 +44,17 @@ def predict(message, history):
|
|
43 |
messages = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]])
|
44 |
for item in history_transformer_format])
|
45 |
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
46 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
47 |
generate_kwargs = dict(
|
48 |
model_inputs,
|
49 |
streamer=streamer,
|
50 |
-
max_new_tokens=
|
51 |
do_sample=True,
|
52 |
-
top_p=0.
|
53 |
top_k=50,
|
54 |
-
temperature=0.
|
55 |
num_beams=1,
|
56 |
-
stopping_criteria=StoppingCriteriaList([stop])
|
57 |
)
|
58 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
59 |
t.start() # Starting the generation in a separate thread.
|
|
|
16 |
# model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)
|
17 |
|
18 |
model_name_or_path = "scutcyr/BianQue-2"
|
19 |
+
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half()
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,trust_remote_code=True)
|
21 |
+
|
22 |
|
23 |
# using CUDA for an optimal experience
|
24 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
44 |
messages = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]])
|
45 |
for item in history_transformer_format])
|
46 |
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
47 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
48 |
generate_kwargs = dict(
|
49 |
model_inputs,
|
50 |
streamer=streamer,
|
51 |
+
max_new_tokens=2048,
|
52 |
do_sample=True,
|
53 |
+
top_p=0.75,
|
54 |
top_k=50,
|
55 |
+
temperature=0.95,
|
56 |
num_beams=1,
|
57 |
+
# stopping_criteria=StoppingCriteriaList([stop]) 暫時拿掉
|
58 |
)
|
59 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
60 |
t.start() # Starting the generation in a separate thread.
|