Hemg commited on
Commit
84fff0d
·
verified ·
1 Parent(s): 1fe0193

Create app1.py

Browse files
Files changed (1) hide show
  1. app1.py +96 -0
app1.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import joblib
3
+ import numpy as np
4
+ import pandas as pd
5
+ from huggingface_hub import hf_hub_download
6
+ from sklearn.preprocessing import StandardScaler, LabelEncoder
7
+
8
+ REPO_ID = "Hemg/modelxxx"
9
+ MoDEL_FILENAME = "studentpredict.joblib"
10
+ SCALER_FILENAME = "studentscaler.joblib"
11
+
12
+ model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME))
13
+ scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME))
14
+
15
+ def encode_categorical_columns(df):
16
+ label_encoder = LabelEncoder()
17
+ ordinal_columns = df.select_dtypes(include=['object']).columns
18
+
19
+ for col in ordinal_columns:
20
+ df[col] = label_encoder.fit_transform(df[col])
21
+
22
+ nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns)
23
+ df = pd.get_dummies(df, columns=nominal_columns, drop_first=True)
24
+
25
+ return df
26
+
27
+ def predict_performance(Location, College_Fee, College, GPA, Year, Course_Interested, Faculty, Source,
28
+ Visited_College_for_Inquiry_Only, Event, Attended_Any_Events,
29
+ Presenter, Visited_Parents):
30
+ try:
31
+ input_data = [[Location, College_Fee, College, GPA, Year, Course_Interested, Faculty, Source,
32
+ Visited_College_for_Inquiry_Only, Event, Attended_Any_Events,
33
+ Presenter, Visited_Parents]]
34
+
35
+ feature_names = ["Location", "College Fee", "College", "GPA", "Year", "Course Interested",
36
+ "Faculty", "Source", "Visited College for Inquiry Only", "Event",
37
+ "Attended Any Events", "Presenter", "Visited Parents"]
38
+
39
+ input_df = pd.DataFrame(input_data, columns=feature_names)
40
+ df = encode_categorical_columns(input_df)
41
+ df = df.reindex(columns=scaler.feature_names_in_, fill_value=0)
42
+ scaled_input = scaler.transform(df)
43
+
44
+ # Get probability prediction
45
+ probabilities = model.predict_proba(scaled_input)[0]
46
+ # Take the probability of positive class (usually index 1)
47
+ admission_probability = probabilities[1]
48
+
49
+ # Ensure the probability is between 0 and 1
50
+ admission_probability = np.clip(admission_probability, 0, 1)
51
+
52
+ # Convert to percentage
53
+ prediction_percentage = admission_probability * 100
54
+
55
+ # Format the output
56
+ confidence_level = ""
57
+ if prediction_percentage >= 75:
58
+ confidence_level = "High chance of admission"
59
+ elif prediction_percentage >= 50:
60
+ confidence_level = "Moderate chance of admission"
61
+ else:
62
+ confidence_level = "Lower chance of admission"
63
+
64
+ return f"Chance of Admission: {prediction_percentage:.1f}%\n{confidence_level}"
65
+
66
+ except Exception as e:
67
+ return f"Error in prediction: {str(e)}"
68
+
69
+ # Create Gradio interface
70
+ iface = gr.Interface(
71
+ fn=predict_performance,
72
+ inputs=[
73
+ gr.Radio(["Kathmandu", "Bhaktapur", "Lalitpur", "Kritipur"], label="Location"),
74
+ gr.Slider(minimum=1000000, maximum=1700000, label="College Fee"),
75
+ gr.Radio(["Trinity", "CCRC", "KMC", "SOS", "ISMT", "St. Xavier's", "Everest", "Prime"], label="College"),
76
+ gr.Slider(minimum=2, maximum=3, label="GPA"),
77
+ gr.Slider(minimum=2020, maximum=2024, step=1, label="Year"),
78
+ gr.Radio(["MSc IT & Applied Security", "BSc (Hons) Computing", "BSc (Hons) Computing with Artificial Intelligence",
79
+ "BSc (Hons) Computer Networking & IT Security", "BSc (Hons) Multimedia Technologies", "MBA",
80
+ "BA (Hons) Accounting & Finance", "BA (Hons) Business Administration"], label="Course_Interested"),
81
+ gr.Radio(["Science", "Management", "Humanities"], label="Faculty"),
82
+ gr.Radio(["Event", "Facebook", "Instagram", "Offline", "Recommendation"], label="Source"),
83
+ gr.Radio(["Yes", "No"], label="visited_college_for_inquery_only"),
84
+ gr.Radio(["New Year", "Dashain", "Orientation", "Fresher's Party", "Holi Festival", "Welcome Ceremony"],
85
+ label="attended_event_name"),
86
+ gr.Radio(["Yes", "No"], label="attended_any_event"),
87
+ gr.Radio(["Ram", "Gita", "Manish", "Shyam", "Raj", "Hari", "Rina", "Shree"], label="Presenter"),
88
+ gr.Radio(["Yes", "No"], label="visited_with_parents")
89
+ ],
90
+ outputs="text",
91
+ title="Student Admission Prediction",
92
+ description="Predict the probability of student admission"
93
+ )
94
+
95
+ if __name__ == "__main__":
96
+ iface.launch(share=True)