Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
@@ -76,6 +76,12 @@ def predict_performance(Location, Course, Faculty, College, Source, Event, Prese
|
|
76 |
print("\nDataFrame after encoding:")
|
77 |
print(df)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
# Scale input data using the loaded scaler
|
80 |
scaled_input = scaler.transform(df)
|
81 |
|
@@ -110,6 +116,7 @@ iface = gr.Interface(
|
|
110 |
gr.Radio(["Ram", "Gita", "Manish", "Shyam", "Raj", "Hari", "Rina", "Shree"],
|
111 |
label="Presenter"),
|
112 |
gr.Radio(["Yes", "No"], label="Visited Parent"),
|
|
|
113 |
gr.Radio(["Yes", "No"], label="Visited College for Inquiry"),
|
114 |
gr.Radio(["Yes", "No"], label="Attended Any Event"),
|
115 |
gr.Number(label="College Fee"),
|
|
|
1 |
+
mport gradio as gr
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
|
|
76 |
print("\nDataFrame after encoding:")
|
77 |
print(df)
|
78 |
|
79 |
+
# Ensure the DataFrame columns match the order used during scaler fitting
|
80 |
+
expected_columns = ["Location", "Course", "Faculty", "College", "Source", "Event",
|
81 |
+
"Presenter", "Visited Parent", "Visited College for Inquiry",
|
82 |
+
"Attended Any Event", "College Fee", "GPA", "Year"]
|
83 |
+
df = df[expected_columns]
|
84 |
+
|
85 |
# Scale input data using the loaded scaler
|
86 |
scaled_input = scaler.transform(df)
|
87 |
|
|
|
116 |
gr.Radio(["Ram", "Gita", "Manish", "Shyam", "Raj", "Hari", "Rina", "Shree"],
|
117 |
label="Presenter"),
|
118 |
gr.Radio(["Yes", "No"], label="Visited Parent"),
|
119 |
+
gr.Radio(["Trinity", "CCRC", "KMC", "SOS", "ISMT", "St. Xavier's", "Everest", "Prime"], label="College"),
|
120 |
gr.Radio(["Yes", "No"], label="Visited College for Inquiry"),
|
121 |
gr.Radio(["Yes", "No"], label="Attended Any Event"),
|
122 |
gr.Number(label="College Fee"),
|