Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import joblib | |
| import numpy as np | |
| import pandas as pd | |
| from huggingface_hub import hf_hub_download | |
| from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder | |
| # Load the trained model and scaler objects from file | |
| REPO_ID = "Hemg/modelxxx" # hugging face repo ID | |
| MoDEL_FILENAME = "studentpredict.joblib" # model file name | |
| SCALER_FILENAME ="studentscaler.joblib" # scaler file name | |
| model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME)) | |
| scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME)) | |
| def encode_categorical_columns(df): | |
| label_encoder = LabelEncoder() | |
| ordinal_columns = df.select_dtypes(include=['object']).columns | |
| for col in ordinal_columns: | |
| df[col] = label_encoder.fit_transform(df[col]) | |
| nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns) | |
| df = pd.get_dummies(df, columns=nominal_columns, drop_first=True) | |
| return df | |
| # Define the prediction function | |
| def predict_performance(Location, College_Fee,College, GPA, Year, Course_Interested, Faculty, Source, | |
| Visited_College_for_Inquiry_Only, Event, Attended_Any_Events, | |
| Presenter, Visited_Parents): | |
| input_data = [[Location, College_Fee,College, GPA, Year, Course_Interested, Faculty, Source, | |
| Visited_College_for_Inquiry_Only, Event, Attended_Any_Events, | |
| Presenter, Visited_Parents]] | |
| feature_names = ["Location", "College Fee", "GPA", "Year", "Course Interested", | |
| "Faculty", "Source", "Visited College for Inquiry Only", "Event", | |
| "Attended Any Events", "College", "Presenter", "Visited Parents"] | |
| input_df = pd.DataFrame(input_data, columns=feature_names) | |
| # Debug print 2: Show DataFrame before encoding | |
| print("\nDataFrame before encoding:") | |
| print(input_df) | |
| df = encode_categorical_columns(input_df) | |
| # Debug print 3: Show DataFrame after encoding | |
| print("\nDataFrame after encoding:") | |
| print(df) | |
| # Ensure the DataFrame columns match the scaler's expected input | |
| df = df.reindex(columns=scaler.feature_names_in_, fill_value=0) | |
| scaled_input = scaler.transform(df) | |
| # Debug print 4: Show scaled input | |
| print("\nScaled input:") | |
| print(scaled_input) | |
| prediction = model.predict(scaled_input)[0] | |
| # Debug print 5: Show prediction details | |
| print("\nPrediction details:") | |
| print(f"Raw prediction: {prediction}") | |
| prediction_probability = 1 / (1 + np.exp(-prediction)) | |
| print(f"Probability: {prediction_probability}") | |
| prediction_percentage = prediction_probability * 100 | |
| print(f"Percentage: {prediction_percentage}") | |
| return f"Chance of Admission: {prediction_percentage:.1f}%" | |
| iface = gr.Interface( | |
| fn=predict_performance, | |
| inputs=[ | |
| gr.Radio(["Kathmandu", "Bhaktapur", "Lalitpur", "Kritipur"], label="Location"), | |
| gr.Slider(minimum=1000000, maximum=1700000, label="College Fee"), | |
| gr.Slider(minimum=2, maximum=3, label="GPA"), | |
| gr.Slider(minimum=2024, maximum=2024, step=1, label="Year"), | |
| gr.Radio(["MSc IT & Applied Security", "BSc (Hons) Computing", "BSc (Hons) Computing with Artificial Intelligence", | |
| "BSc (Hons) Computer Networking & IT Security", "BSc (Hons) Multimedia Technologies", "MBA", | |
| "BA (Hons) Accounting & Finance", "BA (Hons) Business Administration"], label="Course_Interested"), | |
| gr.Radio(["Science", "Management", "Humanities"], label="Faculty"), | |
| gr.Radio(["Event", "Facebook", "Instagram", "Offline", "Recommendation"], label="Source"), | |
| gr.Radio(["Yes", "No"], label="visited_college_for_inquery_only"), | |
| gr.Radio(["New Year", "Dashain", "Orientation", "Fresher's Party", "Holi Festival", "Welcome Ceremony"], | |
| label="attended_event_name"), | |
| gr.Radio(["Yes", "No"], label="attended_any_event"), | |
| gr.Radio(["Trinity", "CCRC", "KMC", "SOS", "ISMT", "St. Xavier's", "Everest", "Prime"], label="College"), | |
| gr.Radio(["Ram", "Gita", "Manish", "Shyam", "Raj", "Hari", "Rina", "Shree"], label="Presenter"), | |
| gr.Radio(["Yes", "No"], label="visited_with_parents") # Removed the incorrect list here | |
| ], | |
| outputs="text", | |
| title="chances of student admission", | |
| description="chances of student admission" | |
| ) | |
| # Run the app | |
| if __name__ == "__main__": | |
| iface.launch(share=True) | |