Hemg's picture
Rename app.py to appx.py
36f3b0b verified
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from huggingface_hub import hf_hub_download
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder
# Load the trained model and scaler objects from file
REPO_ID = "Hemg/modelxxx" # hugging face repo ID
MoDEL_FILENAME = "studentpredict.joblib" # model file name
SCALER_FILENAME ="studentscaler.joblib" # scaler file name
model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME))
scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME))
def encode_categorical_columns(df):
label_encoder = LabelEncoder()
ordinal_columns = df.select_dtypes(include=['object']).columns
for col in ordinal_columns:
df[col] = label_encoder.fit_transform(df[col])
nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns)
df = pd.get_dummies(df, columns=nominal_columns, drop_first=True)
return df
# Define the prediction function
def predict_performance(Location, College_Fee,College, GPA, Year, Course_Interested, Faculty, Source,
Visited_College_for_Inquiry_Only, Event, Attended_Any_Events,
Presenter, Visited_Parents):
input_data = [[Location, College_Fee,College, GPA, Year, Course_Interested, Faculty, Source,
Visited_College_for_Inquiry_Only, Event, Attended_Any_Events,
Presenter, Visited_Parents]]
feature_names = ["Location", "College Fee", "GPA", "Year", "Course Interested",
"Faculty", "Source", "Visited College for Inquiry Only", "Event",
"Attended Any Events", "College", "Presenter", "Visited Parents"]
input_df = pd.DataFrame(input_data, columns=feature_names)
# Debug print 2: Show DataFrame before encoding
print("\nDataFrame before encoding:")
print(input_df)
df = encode_categorical_columns(input_df)
# Debug print 3: Show DataFrame after encoding
print("\nDataFrame after encoding:")
print(df)
# Ensure the DataFrame columns match the scaler's expected input
df = df.reindex(columns=scaler.feature_names_in_, fill_value=0)
scaled_input = scaler.transform(df)
# Debug print 4: Show scaled input
print("\nScaled input:")
print(scaled_input)
prediction = model.predict(scaled_input)[0]
# Debug print 5: Show prediction details
print("\nPrediction details:")
print(f"Raw prediction: {prediction}")
prediction_probability = 1 / (1 + np.exp(-prediction))
print(f"Probability: {prediction_probability}")
prediction_percentage = prediction_probability * 100
print(f"Percentage: {prediction_percentage}")
return f"Chance of Admission: {prediction_percentage:.1f}%"
iface = gr.Interface(
fn=predict_performance,
inputs=[
gr.Radio(["Kathmandu", "Bhaktapur", "Lalitpur", "Kritipur"], label="Location"),
gr.Slider(minimum=1000000, maximum=1700000, label="College Fee"),
gr.Slider(minimum=2, maximum=3, label="GPA"),
gr.Slider(minimum=2024, maximum=2024, step=1, label="Year"),
gr.Radio(["MSc IT & Applied Security", "BSc (Hons) Computing", "BSc (Hons) Computing with Artificial Intelligence",
"BSc (Hons) Computer Networking & IT Security", "BSc (Hons) Multimedia Technologies", "MBA",
"BA (Hons) Accounting & Finance", "BA (Hons) Business Administration"], label="Course_Interested"),
gr.Radio(["Science", "Management", "Humanities"], label="Faculty"),
gr.Radio(["Event", "Facebook", "Instagram", "Offline", "Recommendation"], label="Source"),
gr.Radio(["Yes", "No"], label="visited_college_for_inquery_only"),
gr.Radio(["New Year", "Dashain", "Orientation", "Fresher's Party", "Holi Festival", "Welcome Ceremony"],
label="attended_event_name"),
gr.Radio(["Yes", "No"], label="attended_any_event"),
gr.Radio(["Trinity", "CCRC", "KMC", "SOS", "ISMT", "St. Xavier's", "Everest", "Prime"], label="College"),
gr.Radio(["Ram", "Gita", "Manish", "Shyam", "Raj", "Hari", "Rina", "Shree"], label="Presenter"),
gr.Radio(["Yes", "No"], label="visited_with_parents") # Removed the incorrect list here
],
outputs="text",
title="chances of student admission",
description="chances of student admission"
)
# Run the app
if __name__ == "__main__":
iface.launch(share=True)