Spaces:
Runtime error
Runtime error
HemanthSai7
commited on
Commit
•
c035779
1
Parent(s):
c682e16
Backend changes for conversational qa
Browse files
StudybotAPI/backend/utils/chain_loader.py
CHANGED
@@ -10,6 +10,7 @@ from langchain.chains import (
|
|
10 |
)
|
11 |
from langchain.llms import Clarifai
|
12 |
from langchain.prompts import PromptTemplate
|
|
|
13 |
|
14 |
|
15 |
async def llm_chain_loader(DATA_PATH: str):
|
@@ -19,7 +20,9 @@ async def llm_chain_loader(DATA_PATH: str):
|
|
19 |
with open("backend/utils/prompt.txt", "r", encoding="utf8") as f:
|
20 |
prompt = f.read()
|
21 |
|
22 |
-
prompt = PromptTemplate(
|
|
|
|
|
23 |
|
24 |
llm = Clarifai(
|
25 |
pat=config.CLARIFAI_PAT,
|
@@ -29,12 +32,23 @@ async def llm_chain_loader(DATA_PATH: str):
|
|
29 |
model_version_id=config.MODEL_VERSION_ID,
|
30 |
)
|
31 |
|
32 |
-
qa_chain = RetrievalQA.from_chain_type(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
llm=llm,
|
34 |
chain_type="stuff",
|
35 |
-
retriever=db.as_retriever(search_type="similarity",search_kwargs={"k": 2}),
|
36 |
-
return_source_documents=True,
|
37 |
-
chain_type_kwargs={"prompt": prompt},
|
|
|
|
|
38 |
)
|
39 |
|
40 |
app.state.qa_chain = qa_chain
|
|
|
10 |
)
|
11 |
from langchain.llms import Clarifai
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
+
from langchain.memory import ConversationBufferMemory
|
14 |
|
15 |
|
16 |
async def llm_chain_loader(DATA_PATH: str):
|
|
|
20 |
with open("backend/utils/prompt.txt", "r", encoding="utf8") as f:
|
21 |
prompt = f.read()
|
22 |
|
23 |
+
prompt = PromptTemplate(
|
24 |
+
template=prompt, input_variables=["context", "chat_history", "question"]
|
25 |
+
)
|
26 |
|
27 |
llm = Clarifai(
|
28 |
pat=config.CLARIFAI_PAT,
|
|
|
32 |
model_version_id=config.MODEL_VERSION_ID,
|
33 |
)
|
34 |
|
35 |
+
# qa_chain = RetrievalQA.from_chain_type(
|
36 |
+
# llm=llm,
|
37 |
+
# chain_type="stuff",
|
38 |
+
# retriever=db.as_retriever(search_type="similarity",search_kwargs={"k": 2}),
|
39 |
+
# return_source_documents=True,
|
40 |
+
# chain_type_kwargs={"prompt": prompt},
|
41 |
+
# )
|
42 |
+
|
43 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
44 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
45 |
llm=llm,
|
46 |
chain_type="stuff",
|
47 |
+
retriever=db.as_retriever(search_type="similarity", search_kwargs={"k": 2}),
|
48 |
+
# return_source_documents=True,
|
49 |
+
# chain_type_kwargs={"prompt": prompt},
|
50 |
+
condense_question_prompt=prompt,
|
51 |
+
memory=memory,
|
52 |
)
|
53 |
|
54 |
app.state.qa_chain = qa_chain
|
StudybotAPI/backend/utils/prompt.txt
CHANGED
@@ -9,4 +9,10 @@ The "SOURCES" part should be a reference to the source of the document from whic
|
|
9 |
Consider a student engaged in the study of any theoretical subject, where the abundance of concepts and events poses a challenge to memorization. The aim is to overcome this hurdle and be capable of providing brief answers to specific queries. For example, if a student forgets a key concept, date, or event, they can ask the bot a question like "What is [specific query]?" for a concise answer.
|
10 |
Note that students can also ask multiple questions in a single query. For example, "What is [specific query 1]?, What is [specific query 2]?, What is [specific query 3]?".
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
Consider a student engaged in the study of any theoretical subject, where the abundance of concepts and events poses a challenge to memorization. The aim is to overcome this hurdle and be capable of providing brief answers to specific queries. For example, if a student forgets a key concept, date, or event, they can ask the bot a question like "What is [specific query]?" for a concise answer.
|
10 |
Note that students can also ask multiple questions in a single query. For example, "What is [specific query 1]?, What is [specific query 2]?, What is [specific query 3]?".
|
11 |
|
12 |
+
Chat History:
|
13 |
+
{chat_history}
|
14 |
+
|
15 |
+
Follow Up Input: {question}
|
16 |
+
Standalone question:
|
17 |
+
|
18 |
+
[/INST]
|