Commit
·
9ba4070
1
Parent(s):
75289c7
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from tensorflow.keras.layers import Dense
|
|
6 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
import numpy as np
|
8 |
import pickle
|
9 |
-
from stable_baselines3 import PPO
|
10 |
|
11 |
app = FastAPI(title="Transaction Classifier API", description="API for classifying banking transactions.")
|
12 |
print("FastAPI app initialized...")
|
@@ -72,15 +71,8 @@ def load_resources():
|
|
72 |
print(f"Num categories: {len(le_category.classes_)}, Num subcategories: {len(le_subcategory.classes_)}")
|
73 |
return model, tokenizer, le_category, le_subcategory
|
74 |
|
75 |
-
def load_ppo_model():
|
76 |
-
print("Loading PPO model...")
|
77 |
-
ppo = PPO.load('ppo_finetuned_model')
|
78 |
-
print("PPO model loaded.")
|
79 |
-
return ppo
|
80 |
-
|
81 |
class TransactionRequest(BaseModel):
|
82 |
description: str
|
83 |
-
use_rl: Optional[bool] = False
|
84 |
|
85 |
class PredictionResponse(BaseModel):
|
86 |
category: str
|
@@ -96,30 +88,20 @@ async def root():
|
|
96 |
async def predict(request: TransactionRequest):
|
97 |
try:
|
98 |
model, tokenizer, le_category, le_subcategory = load_resources()
|
99 |
-
num_subcategories = len(le_subcategory.classes_)
|
100 |
|
101 |
seq = tokenizer.texts_to_sequences([request.description])
|
102 |
pad = pad_sequences(seq, maxlen=max_len, padding='post')
|
103 |
pred = model.predict(pad, verbose=0)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
print(f"RL Action: {action}, Observation: {obs}")
|
110 |
-
cat_idx = action // num_subcategories
|
111 |
-
subcat_idx = action % num_subcategories
|
112 |
-
print(f"RL cat_idx: {cat_idx}, subcat_idx: {subcat_idx}")
|
113 |
-
else:
|
114 |
-
cat_probs = pred[0][0]
|
115 |
-
subcat_probs = pred[1][0]
|
116 |
-
cat_idx = np.argmax(cat_probs)
|
117 |
-
subcat_idx = np.argmax(subcat_probs)
|
118 |
|
119 |
cat_pred = le_category.inverse_transform([cat_idx])[0]
|
120 |
subcat_pred = le_subcategory.inverse_transform([subcat_idx])[0]
|
121 |
-
cat_conf = float(
|
122 |
-
subcat_conf = float(
|
123 |
|
124 |
print(f"Predicted: category={cat_pred}, subcategory={subcat_pred}")
|
125 |
return {
|
|
|
6 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
import numpy as np
|
8 |
import pickle
|
|
|
9 |
|
10 |
app = FastAPI(title="Transaction Classifier API", description="API for classifying banking transactions.")
|
11 |
print("FastAPI app initialized...")
|
|
|
71 |
print(f"Num categories: {len(le_category.classes_)}, Num subcategories: {len(le_subcategory.classes_)}")
|
72 |
return model, tokenizer, le_category, le_subcategory
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
class TransactionRequest(BaseModel):
|
75 |
description: str
|
|
|
76 |
|
77 |
class PredictionResponse(BaseModel):
|
78 |
category: str
|
|
|
88 |
async def predict(request: TransactionRequest):
|
89 |
try:
|
90 |
model, tokenizer, le_category, le_subcategory = load_resources()
|
|
|
91 |
|
92 |
seq = tokenizer.texts_to_sequences([request.description])
|
93 |
pad = pad_sequences(seq, maxlen=max_len, padding='post')
|
94 |
pred = model.predict(pad, verbose=0)
|
95 |
|
96 |
+
cat_probs = pred[0][0]
|
97 |
+
subcat_probs = pred[1][0]
|
98 |
+
cat_idx = np.argmax(cat_probs)
|
99 |
+
subcat_idx = np.argmax(subcat_probs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
cat_pred = le_category.inverse_transform([cat_idx])[0]
|
102 |
subcat_pred = le_subcategory.inverse_transform([subcat_idx])[0]
|
103 |
+
cat_conf = float(cat_probs[cat_idx] * 100)
|
104 |
+
subcat_conf = float(subcat_probs[subcat_idx] * 100)
|
105 |
|
106 |
print(f"Predicted: category={cat_pred}, subcategory={subcat_pred}")
|
107 |
return {
|