Spaces:
Sleeping
Sleeping
| import torch.nn as nn | |
| class EvoTransformerArabic(nn.Module): | |
| def __init__(self, d_model=768, hidden_dim=1024, n_classes=2, dropout=0.1): | |
| super(EvoTransformerArabic, self).__init__() | |
| self.classifier = nn.Sequential( | |
| nn.Linear(d_model, hidden_dim), | |
| nn.ReLU(), | |
| nn.Dropout(dropout), | |
| nn.Linear(hidden_dim, hidden_dim // 2), | |
| nn.ReLU(), | |
| nn.Dropout(dropout), | |
| nn.Linear(hidden_dim // 2, n_classes) | |
| ) | |
| def forward(self, x): | |
| return self.classifier(x) | |