Spaces:
Running
Running
import os | |
from transformers import BertTokenizer | |
from evo_model import EvoTransformerConfig, EvoTransformerForClassification | |
def initialize_and_save_model(): | |
# Step 1: Initialize configuration with architecture info | |
config = EvoTransformerConfig( | |
hidden_size=384, | |
num_layers=6, | |
num_labels=2, | |
num_heads=6, | |
ffn_dim=1024, | |
use_memory=False | |
) | |
# Step 2: Initialize model | |
model = EvoTransformerForClassification(config) | |
# Step 3: Save model | |
os.makedirs("trained_model", exist_ok=True) | |
model.save_pretrained("trained_model") | |
# Step 4: Save tokenizer (BERT-based) | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
tokenizer.save_pretrained("trained_model") | |
print("✅ EvoTransformer and tokenizer initialized and saved to 'trained_model/'") | |
def load_model(): | |
# Load model from saved directory | |
model = EvoTransformerForClassification.from_pretrained("trained_model") | |
return model | |
# Allow direct run | |
if __name__ == "__main__": | |
initialize_and_save_model() | |