Spaces:
Sleeping
Sleeping
import os | |
import faiss | |
import torch | |
from transformers import AutoTokenizer, AutoModel | |
from sentence_transformers import SentenceTransformer | |
from PyPDF2 import PdfReader | |
class RAGRetriever: | |
def __init__(self): | |
self.encoder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
self.index = faiss.IndexFlatL2(384) | |
self.contexts = [] | |
self.ids = [] | |
def add_document(self, text): | |
sentences = text.split("\n") | |
clean_sentences = [s.strip() for s in sentences if s.strip()] | |
embeddings = self.encoder.encode(clean_sentences) | |
self.index.add(embeddings) | |
self.contexts.extend(clean_sentences) | |
def retrieve(self, query, top_k=3): | |
q_vec = self.encoder.encode([query]) | |
D, I = self.index.search(q_vec, top_k) | |
return [self.contexts[i] for i in I[0]] | |
def extract_text_from_file(file_path): | |
ext = os.path.splitext(file_path)[-1].lower() | |
if ext == ".txt": | |
with open(file_path, "r", encoding="utf-8") as f: | |
return f.read() | |
elif ext == ".pdf": | |
reader = PdfReader(file_path) | |
return "\n".join([page.extract_text() for page in reader.pages if page.extract_text()]) | |
else: | |
return "" | |