EvoPlatform / inference.py
HemanM's picture
Update inference.py
e87c15e verified
import torch
from transformers import AutoTokenizer
from evo_model import EvoTransformerV22
from search_utils import web_search
import openai
import os
# Load Evo model and tokenizer
model = EvoTransformerV22()
model.load_state_dict(torch.load("evo_hellaswag.pt", map_location="cpu"))
model.eval()
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# GPT Setup
openai.api_key = os.getenv("OPENAI_API_KEY") # 🔒 Load securely from environment
def get_evo_response(query, options, user_context=""):
context_texts = web_search(query) + ([user_context] if user_context else [])
context_str = "\n".join(context_texts)
input_pairs = [f"{query} [SEP] {opt} [CTX] {context_str}" for opt in options]
scores = []
for pair in input_pairs:
encoded = tokenizer(pair, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
with torch.no_grad():
output = model(encoded["input_ids"])
score = torch.sigmoid(output).item()
scores.append(score)
best_idx = int(scores[1] > scores[0])
return (
options[best_idx],
f"{options[0]}: {scores[0]:.3f} vs {options[1]}: {scores[1]:.3f}",
max(scores),
context_str
)
def get_gpt_response(query, user_context=""):
try:
context_block = f"\n\nContext:\n{user_context}" if user_context else ""
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": query + context_block}
],
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"⚠️ GPT error:\n\n{str(e)}"