Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer | |
from evo_model import EvoTransformerV22 | |
from search_utils import web_search | |
import openai | |
import os | |
# Load Evo model and tokenizer | |
model = EvoTransformerV22() | |
model.load_state_dict(torch.load("evo_hellaswag.pt", map_location="cpu")) | |
model.eval() | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
# GPT Setup | |
openai.api_key = os.getenv("OPENAI_API_KEY") # 🔒 Load securely from environment | |
def get_evo_response(query, options, user_context=""): | |
context_texts = web_search(query) + ([user_context] if user_context else []) | |
context_str = "\n".join(context_texts) | |
input_pairs = [f"{query} [SEP] {opt} [CTX] {context_str}" for opt in options] | |
scores = [] | |
for pair in input_pairs: | |
encoded = tokenizer(pair, return_tensors="pt", truncation=True, padding="max_length", max_length=128) | |
with torch.no_grad(): | |
output = model(encoded["input_ids"]) | |
score = torch.sigmoid(output).item() | |
scores.append(score) | |
best_idx = int(scores[1] > scores[0]) | |
return ( | |
options[best_idx], | |
f"{options[0]}: {scores[0]:.3f} vs {options[1]}: {scores[1]:.3f}", | |
max(scores), | |
context_str | |
) | |
def get_gpt_response(query, user_context=""): | |
try: | |
context_block = f"\n\nContext:\n{user_context}" if user_context else "" | |
response = openai.chat.completions.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "user", "content": query + context_block} | |
], | |
temperature=0.7, | |
) | |
return response.choices[0].message.content.strip() | |
except Exception as e: | |
return f"⚠️ GPT error:\n\n{str(e)}" | |