HelloSun's picture
Update app.py
c232559 verified
raw
history blame
3.94 kB
import gradio as gr
import numpy as np
from optimum.intel import OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers import DiffusionPipeline
from diffusers.schedulers import EulerDiscreteScheduler
#model_id = "echarlaix/sdxl-turbo-openvino-int8"
#model_id = "echarlaix/LCM_Dreamshaper_v7-openvino"
model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov"
#safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
#pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False, safety_checker=safety_checker)
pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False)
batch_size, num_images, height, width = 1, 1, 1024, 512
pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
#不可用lora
#pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
#pipeline.set_adapters("pixel")
# 选择采样方法(调度器) 可以新增但是跑就死
#scheduler = EulerDiscreteScheduler()
#pipeline.scheduler = scheduler
#badhandv4
#pipeline.load_textual_inversion("./badhandv4.pt", "badhandv4")
#hiten1
#pipeline.load_textual_inversion("./hiten1.pt", "hiten1")
pipeline.compile()
#TypeError: LatentConsistencyPipelineMixin.__call__() got an unexpected keyword argument 'negative_prompt'
#negative_prompt="easynegative,bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs, nsfw, nude, censored, "
def infer(prompt, num_inference_steps):
image = pipeline(
prompt = prompt,
#negative_prompt = negative_prompt,
guidance_scale = 7.0,
num_inference_steps = num_inference_steps,
width = width,
height = height,
num_images_per_prompt=num_images,
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Demo : [Fast LCM](https://huggingface.co/OpenVINO/LCM_Dreamshaper_v7-int8-ov) quantized with NNCF ⚡
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
#with gr.Row():
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# )
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=10,
step=1,
value=5,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, num_inference_steps],
outputs = [result]
)
demo.queue().launch(share=True)