Spaces:
Runtime error
Runtime error
add app
Browse files- app.py +231 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Hello-SimpleAI Org. 2023.
|
2 |
+
# Licensed under the Apache License, Version 2.0.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
import re
|
7 |
+
from typing import Callable, List, Tuple
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
from nltk.data import load as nltk_load
|
11 |
+
import numpy as np
|
12 |
+
from sklearn.linear_model import LogisticRegression
|
13 |
+
import torch
|
14 |
+
from transformers.utils import cached_file
|
15 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
16 |
+
|
17 |
+
|
18 |
+
AUTH_TOKEN = os.environ.get("access_token")
|
19 |
+
DET_LING_ID = 'Hello-SimpleAI/chatgpt-detector-ling'
|
20 |
+
|
21 |
+
|
22 |
+
def download_file(filename):
|
23 |
+
return cached_file(DET_LING_ID, filename, use_auth_token=AUTH_TOKEN)
|
24 |
+
|
25 |
+
|
26 |
+
NLTK = nltk_load(download_file('english.pickle'))
|
27 |
+
sent_cut_en = NLTK.tokenize
|
28 |
+
LR_GLTR_EN, LR_PPL_EN = [
|
29 |
+
pickle.load(open(download_file(f'{lang}-gpt2-{name}.pkl'), 'rb'))
|
30 |
+
for lang, name in [('en', 'gltr'), ('en', 'ppl')]
|
31 |
+
]
|
32 |
+
|
33 |
+
NAME_EN = 'gpt2'
|
34 |
+
TOKENIZER_EN = GPT2Tokenizer.from_pretrained(NAME_EN)
|
35 |
+
MODEL_EN = GPT2LMHeadModel.from_pretrained(NAME_EN)
|
36 |
+
|
37 |
+
|
38 |
+
# code borrowed from https://github.com/blmoistawinde/HarvestText
|
39 |
+
def sent_cut_zh(para: str) -> List[str]:
|
40 |
+
para = re.sub('([。!?\?!])([^”’)\])】])', r"\1\n\2", para) # 单字符断句符
|
41 |
+
para = re.sub('(\.{3,})([^”’)\])】….])', r"\1\n\2", para) # 英文省略号
|
42 |
+
para = re.sub('(\…+)([^”’)\])】….])', r"\1\n\2", para) # 中文省略号
|
43 |
+
para = re.sub('([。!?\?!]|\.{3,}|\…+)([”’)\])】])([^,。!?\?….])', r'\1\2\n\3', para)
|
44 |
+
# 如果双引号前有终止符,那么双引号才是句子的终点,把分句符\n放到双引号后,注意前面的几句都小心保留了双引号
|
45 |
+
para = para.rstrip() # 段尾如果有多余的\n就去掉它
|
46 |
+
# 很多规则中会考虑分号;,但是这里我把它忽略不计,破折号、英文双引号等同样忽略,需要的再做些简单调整即可。
|
47 |
+
sentences = para.split("\n")
|
48 |
+
sentences = [sent.strip() for sent in sentences]
|
49 |
+
sentences = [sent for sent in sentences if len(sent.strip()) > 0]
|
50 |
+
return sentences
|
51 |
+
|
52 |
+
|
53 |
+
CROSS_ENTROPY = torch.nn.CrossEntropyLoss(reduction='none')
|
54 |
+
|
55 |
+
|
56 |
+
def gpt2_features(
|
57 |
+
text: str, tokenizer: GPT2Tokenizer, model: GPT2LMHeadModel, sent_cut: Callable
|
58 |
+
) -> Tuple[List[int], List[float]]:
|
59 |
+
# Tokenize
|
60 |
+
input_max_length = tokenizer.model_max_length - 2
|
61 |
+
token_ids, offsets = list(), list()
|
62 |
+
sentences = sent_cut(text)
|
63 |
+
for s in sentences:
|
64 |
+
tokens = tokenizer.tokenize(s)
|
65 |
+
ids = tokenizer.convert_tokens_to_ids(tokens)
|
66 |
+
difference = len(token_ids) + len(ids) - input_max_length
|
67 |
+
if difference > 0:
|
68 |
+
ids = ids[:-difference]
|
69 |
+
offsets.append((len(token_ids), len(token_ids) + len(ids))) # 左开右闭
|
70 |
+
token_ids.extend(ids)
|
71 |
+
if difference >= 0:
|
72 |
+
break
|
73 |
+
|
74 |
+
input_ids = torch.tensor([tokenizer.bos_token_id] + token_ids)
|
75 |
+
logits = model(input_ids).logits
|
76 |
+
# Shift so that n-1 predict n
|
77 |
+
shift_logits = logits[:-1].contiguous()
|
78 |
+
shift_target = input_ids[1:].contiguous()
|
79 |
+
loss = CROSS_ENTROPY(shift_logits, shift_target)
|
80 |
+
|
81 |
+
all_probs = torch.softmax(shift_logits, dim=-1)
|
82 |
+
sorted_ids = torch.argsort(all_probs, dim=-1, descending=True) # stable=True
|
83 |
+
expanded_tokens = shift_target.unsqueeze(-1).expand_as(sorted_ids)
|
84 |
+
indices = torch.where(sorted_ids == expanded_tokens)
|
85 |
+
rank = indices[-1]
|
86 |
+
counter = [
|
87 |
+
rank < 10,
|
88 |
+
(rank >= 10) & (rank < 100),
|
89 |
+
(rank >= 100) & (rank < 1000),
|
90 |
+
rank >= 1000
|
91 |
+
]
|
92 |
+
counter = [c.long().sum(-1).item() for c in counter]
|
93 |
+
|
94 |
+
|
95 |
+
# compute different-level ppl
|
96 |
+
text_ppl = loss.mean().exp().item()
|
97 |
+
sent_ppl = list()
|
98 |
+
for start, end in offsets:
|
99 |
+
nll = loss[start: end].sum() / (end - start)
|
100 |
+
sent_ppl.append(nll.exp().item())
|
101 |
+
max_sent_ppl = max(sent_ppl)
|
102 |
+
sent_ppl_avg = sum(sent_ppl) / len(sent_ppl)
|
103 |
+
if len(sent_ppl) > 1:
|
104 |
+
sent_ppl_std = torch.std(torch.tensor(sent_ppl)).item()
|
105 |
+
else:
|
106 |
+
sent_ppl_std = 0
|
107 |
+
|
108 |
+
mask = torch.tensor([1] * loss.size(0))
|
109 |
+
step_ppl = loss.cumsum(dim=-1).div(mask.cumsum(dim=-1)).exp()
|
110 |
+
max_step_ppl = step_ppl.max(dim=-1)[0].item()
|
111 |
+
step_ppl_avg = step_ppl.sum(dim=-1).div(loss.size(0)).item()
|
112 |
+
if step_ppl.size(0) > 1:
|
113 |
+
step_ppl_std = step_ppl.std().item()
|
114 |
+
else:
|
115 |
+
step_ppl_std = 0
|
116 |
+
ppls = [
|
117 |
+
text_ppl, max_sent_ppl, sent_ppl_avg, sent_ppl_std,
|
118 |
+
max_step_ppl, step_ppl_avg, step_ppl_std
|
119 |
+
]
|
120 |
+
return counter, ppls # type: ignore
|
121 |
+
|
122 |
+
|
123 |
+
def lr_predict(
|
124 |
+
f_gltr: List[int], f_ppl: List[float], lr_gltr: LogisticRegression, lr_ppl: LogisticRegression,
|
125 |
+
id_to_label: List[str]
|
126 |
+
) -> List:
|
127 |
+
x_gltr = np.asarray([f_gltr])
|
128 |
+
gltr_label = lr_gltr.predict(x_gltr)[0]
|
129 |
+
gltr_prob = lr_gltr.predict_proba(x_gltr)[0, gltr_label]
|
130 |
+
x_ppl = np.asarray([f_ppl])
|
131 |
+
ppl_label = lr_ppl.predict(x_ppl)[0]
|
132 |
+
ppl_prob = lr_ppl.predict_proba(x_ppl)[0, ppl_label]
|
133 |
+
return [id_to_label[gltr_label], gltr_prob, id_to_label[ppl_label], ppl_prob]
|
134 |
+
|
135 |
+
|
136 |
+
def predict_en(text: str) -> List:
|
137 |
+
with torch.no_grad():
|
138 |
+
feat = gpt2_features(text, TOKENIZER_EN, MODEL_EN, sent_cut_en)
|
139 |
+
out = lr_predict(*feat, LR_GLTR_EN, LR_PPL_EN, ['Human', 'ChatGPT'])
|
140 |
+
return out
|
141 |
+
|
142 |
+
|
143 |
+
def predict_zh(text: str) -> List:
|
144 |
+
with torch.no_grad():
|
145 |
+
feat = gpt2_features(text, TOKENIZER_ZH, MODEL_ZH, sent_cut_zh)
|
146 |
+
out = lr_predict(*feat, None, None, ['人类', 'ChatGPT'])
|
147 |
+
return out
|
148 |
+
|
149 |
+
|
150 |
+
with gr.Blocks() as demo:
|
151 |
+
gr.Markdown(
|
152 |
+
"""
|
153 |
+
## ChatGPT Detector 🔬 (Linguistic version)
|
154 |
+
Visit our project on Github: [chatgpt-comparison-detection project](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)<br>
|
155 |
+
欢迎在 Github 上关注我们的 [ChatGPT 对比与检测项目](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)
|
156 |
+
We provide three kinds of detectors, all in Bilingual / 我们提供了三个版本的检测器,且都支持中英文:
|
157 |
+
- [QA version / 问答版](https://huggingface.co/spaces/Hello-SimpleAI/chatgpt-detector-qa)<br>
|
158 |
+
detect whether an **answer** is generated by ChatGPT for certain **question**, using PLM-based classifiers / 判断某个**问题的回答**是否由ChatGPT生成,使用基于PTM的分类器来开发;
|
159 |
+
- [Sinlge-text version / 独立文本版](https://huggingface.co/spaces/Hello-SimpleAI/chatgpt-detector-single)<br>
|
160 |
+
detect whether a piece of text is ChatGPT generated, using PLM-based classifiers / 判断**单条文本**是否由ChatGPT生成,使用基于PTM的分类器来开发;
|
161 |
+
- [**Linguistic version / 语言学版** (👈 Current / 当前使用)](https://huggingface.co/spaces/Hello-SimpleAI/chatgpt-detector-ling)<br>
|
162 |
+
detect whether a piece of text is ChatGPT generated, using linguistic features / 判断**单条文本**是否由ChatGPT生成,使用基于语言学特征的模型来开发;
|
163 |
+
|
164 |
+
## Introduction:
|
165 |
+
Two Logistic regression models trained with two kinds of features:
|
166 |
+
1. [GLTR](https://aclanthology.org/P19-3019) Test-2, Language model predict token rank top-k buckets, top 10, 10-100, 100-1000, 1000+.
|
167 |
+
2. PPL-based, text ppl, `avg` & `max` & `std` of sentence ppls, `avg` & `max` &`std` of timestep ppls.
|
168 |
+
|
169 |
+
English LM is [GPT2-small](https://huggingface.co/gpt2).
|
170 |
+
|
171 |
+
## 介绍:
|
172 |
+
两个逻辑回归模型, 分别使用以下两种特征:
|
173 |
+
1. [GLTR](https://aclanthology.org/P19-3019) Test-2, 每个词的语言模型预测排名分桶, top 10, 10-100, 100-1000, 1000+.
|
174 |
+
2. 基于语言模型困惑度 (PPL), text ppl, `avg` & `max` & `std` of sentence ppls, `avg` & `max` &`std` of timestep ppls.
|
175 |
+
|
176 |
+
中文语言模型使用 闻仲 [Wenzhong-GPT2-110M](https://huggingface.co/IDEA-CCNL/Wenzhong-GPT2-110M).
|
177 |
+
|
178 |
+
"""
|
179 |
+
)
|
180 |
+
|
181 |
+
with gr.Tab("English"):
|
182 |
+
gr.Markdown(
|
183 |
+
"""
|
184 |
+
Note: Providing more text to the `Text` box can make the prediction more accurate!
|
185 |
+
"""
|
186 |
+
)
|
187 |
+
a1 = gr.Textbox(lines=5, label='Text', value="""
|
188 |
+
There are a few things that can help protect your credit card information from being misused when you give it to a restaurant or any other business:
|
189 |
+
\nEncryption: Many businesses use encryption to protect your credit card information when it is being transmitted or stored.
|
190 |
+
This means that the information is transformed into a code that is difficult for anyone to read without the right key.
|
191 |
+
"""
|
192 |
+
)
|
193 |
+
button1 = gr.Button("🤖 Predict!")
|
194 |
+
label1_gltr = gr.Textbox(lines=1, label='GLTR Predicted Label 🎃')
|
195 |
+
score1_gltr = gr.Textbox(lines=1, label='GLTR Probability')
|
196 |
+
label1_ppl = gr.Textbox(lines=1, label='PPL Predicted Label 🎃')
|
197 |
+
score1_ppl = gr.Textbox(lines=1, label='PPL Probability')
|
198 |
+
|
199 |
+
with gr.Tab("中文版"):
|
200 |
+
gr.Markdown(
|
201 |
+
"""
|
202 |
+
注意: 在`文本`栏中输入更多的文本,可以让预测更准确哦!
|
203 |
+
"""
|
204 |
+
)
|
205 |
+
a2 = gr.Textbox(lines=5, label='文本',value="""
|
206 |
+
对于OpenAI大力出奇迹的工作,自然每个人都有自己的看点。
|
207 |
+
我自己最欣赏的地方是ChatGPT如何解决 “AI校正(Alignment)“这个问题。
|
208 |
+
这个问题也是我们课题组这两年在探索的学术问题之一。
|
209 |
+
"""
|
210 |
+
)
|
211 |
+
button2 = gr.Button("🤖 预测!")
|
212 |
+
label2_gltr = gr.Textbox(lines=1, label='GLTR 预测结果 🎃')
|
213 |
+
score2_gltr = gr.Textbox(lines=1, label='GLTR 模型概率')
|
214 |
+
label2_ppl = gr.Textbox(lines=1, label='PPL 预测结果 🎃')
|
215 |
+
score2_ppl = gr.Textbox(lines=1, label='PPL 模型概率')
|
216 |
+
|
217 |
+
button1.click(predict_en, inputs=[a1], outputs=[label1_gltr, score1_gltr, label1_ppl, score1_ppl])
|
218 |
+
button2.click(predict_zh, inputs=[a2], outputs=[label2_gltr, score2_gltr, label2_ppl, score2_ppl])
|
219 |
+
|
220 |
+
# Page Count
|
221 |
+
gr.Markdown(
|
222 |
+
"""
|
223 |
+
<center>
|
224 |
+
<a href='https://clustrmaps.com/site/1bsdd' title='Visit tracker'>
|
225 |
+
< img src='//clustrmaps.com/map_v2.png?cl=080808&w=a&t=tt&d=NvxUHBTxY0ECXEuebgz8Ym8ynpVtduq59ENXoQpFh74&co=ffffff&ct=808080'/>
|
226 |
+
</a>
|
227 |
+
</center>
|
228 |
+
"""
|
229 |
+
)
|
230 |
+
|
231 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.20,<4.26.0
|
2 |
+
nltk>=3.0,<=4.0
|
3 |
+
scikit-learn>=1.0,<=1.2
|