Spaces:
Sleeping
Sleeping
Rainsilves
commited on
Commit
β’
013fb26
1
Parent(s):
944943b
added Gadsby
Browse files- app.py +109 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from unittest import result
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
import torch
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from transformers import (AutoModelForCausalLM, AutoModelForQuestionAnswering,
|
8 |
+
AutoModelForSeq2SeqLM,
|
9 |
+
AutoModelForSequenceClassification, AutoTokenizer,
|
10 |
+
GPT2Tokenizer, LogitsProcessor, LogitsProcessorList,
|
11 |
+
pipeline, top_k_top_p_filtering)
|
12 |
+
|
13 |
+
|
14 |
+
st.set_page_config(page_title="Gadsby")
|
15 |
+
st.title("Gadsby - Constrained Text Generation with Transformers")
|
16 |
+
st.caption("By Allen Roush")
|
17 |
+
st.caption("Find me on Linkedin: https://www.linkedin.com/in/allen-roush-27721011b/")
|
18 |
+
st.image("https://upload.wikimedia.org/wikipedia/commons/1/1d/Gadsby_%28book_cover%29.jpg")
|
19 |
+
st.caption("The inspiration for this space: https://en.wikipedia.org/wiki/Gadsby_(novel)")
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
form = st.sidebar.form("choose_settings")
|
24 |
+
form.header("Main Settings")
|
25 |
+
|
26 |
+
model_name = form.text_area("Enter the name of the pre-trained model from transformers that we are using for Text Generation", value = "gpt2")
|
27 |
+
form.caption("This will download a new model, so it may take awhile or even break if the model is too large")
|
28 |
+
mode = form.selectbox("What kind of constrained generation are we doing?", ["lipogram", "reverse_lipogram", "length_constrained", "greater_than_length"])
|
29 |
+
form.caption("Lipograms mean that a letter (or substring) is not allowed in the generated string, reverse lipograms force a letter to be in the generated string")
|
30 |
+
|
31 |
+
if mode == "lipogram":
|
32 |
+
naughty_strings_list = st.text_area("Enter the list of strings that you don't want in each word seperated by a space", value = "E e")
|
33 |
+
naughty_strings = naughty_strings_list.split(" ")
|
34 |
+
elif mode == "reverse_lipogram":
|
35 |
+
nice_strings_list = st.text_area("Enter the list of strings that you DO want in each word seperated by a space", value = "t T")
|
36 |
+
nice_strings = nice_strings_list.split(" ")
|
37 |
+
else:
|
38 |
+
length_constraint = form.number_input("Enter the length should each word be restricted to (or greater/less than)", value = 5) + 1
|
39 |
+
|
40 |
+
|
41 |
+
length = form.number_input("Select how long you want the generated text to be", value = 100)
|
42 |
+
number_of_tokens_to_sample = form.number_input("Select how many tokens we want to search through when we do the filtering", value = 1000)
|
43 |
+
form.caption("Settings this to higher numbers will improve the experience but will cause generating to slow. Low numbers may cause lots of blank or failed generations")
|
44 |
+
temperature = form.number_input("How spicy/interesting do we want our models output to be", value = 1.05, min_value = 0.0)
|
45 |
+
form.caption("Setting this higher decreases the likelihood of high probability words and increases the likelihood of low probability (and presumably more interesting) words")
|
46 |
+
form.caption("For more details on what these settings mean, see here: https://huggingface.co/blog/how-to-generate")
|
47 |
+
|
48 |
+
|
49 |
+
sequence = st.text_area("Enter a custom prompt", value = "I don't want")
|
50 |
+
|
51 |
+
form.form_submit_button("Generate some Constrained Text!")
|
52 |
+
|
53 |
+
|
54 |
+
with st.spinner("Please wait while the model loads:"):
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
57 |
+
|
58 |
+
|
59 |
+
def isPalindrome(s):
|
60 |
+
return s == s[::-1]
|
61 |
+
|
62 |
+
|
63 |
+
def get_next_word_without_e(input_sequence):
|
64 |
+
input_ids = tokenizer.encode(sequence, return_tensors="pt")
|
65 |
+
# get logits of last hidden state
|
66 |
+
next_token_candidates_logits = model(input_ids)[0][:, -1, :]
|
67 |
+
if temperature != 1.0:
|
68 |
+
next_token_candidates_logits = next_token_candidates_logits / temperature
|
69 |
+
# filter
|
70 |
+
filtered_next_token_candidates_logits = top_k_top_p_filtering(next_token_candidates_logits, top_k=number_of_tokens_to_sample, top_p=number_of_tokens_to_sample)
|
71 |
+
# sample and get a probability distribution
|
72 |
+
probs = F.softmax(filtered_next_token_candidates_logits, dim=-1)
|
73 |
+
next_token_candidates = torch.multinomial(probs, num_samples=number_of_tokens_to_sample) ## 10000 random samples
|
74 |
+
word_list = []
|
75 |
+
for candidate_string in next_token_candidates:
|
76 |
+
for candidate in candidate_string:
|
77 |
+
resulting_string = tokenizer.decode(candidate) #skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
78 |
+
###Constrained text generation starts HERE
|
79 |
+
##Lipogram - No naughty strings used
|
80 |
+
if mode == "lipogram":
|
81 |
+
if all(nauty_string not in resulting_string for nauty_string in naughty_strings): ## This returns at the first naughty strings
|
82 |
+
return resulting_string
|
83 |
+
##Reverse-Lipogram - Must use things in nice_strings
|
84 |
+
elif mode == "reverse_lipogram":
|
85 |
+
if any(nice_string in resulting_string for nice_string in nice_strings):
|
86 |
+
return resulting_string
|
87 |
+
##Length constraints
|
88 |
+
elif mode == "length_constrained":
|
89 |
+
##Seems reliable if length is greater than 4
|
90 |
+
if len(resulting_string) == length_constraint:
|
91 |
+
return resulting_string
|
92 |
+
elif mode == "greater_than_length":
|
93 |
+
##Only sort of works
|
94 |
+
if len(resulting_string) >= length_constraint:
|
95 |
+
return resulting_string
|
96 |
+
return " "
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
i = length
|
101 |
+
while i > 0:
|
102 |
+
new_word = get_next_word_without_e(input_sequence= sequence)
|
103 |
+
sequence = sequence + new_word
|
104 |
+
i = i-1
|
105 |
+
|
106 |
+
st.write("GENERATED SEQUENCE: ")
|
107 |
+
st.write(sequence)
|
108 |
+
|
109 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|