Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,18 +6,9 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
import spaces
|
8 |
import torch
|
9 |
-
from diffusers import
|
10 |
from PIL import Image
|
11 |
|
12 |
-
# Make sure PEFT is installed
|
13 |
-
try:
|
14 |
-
import peft
|
15 |
-
except ImportError:
|
16 |
-
import subprocess
|
17 |
-
print("Installing PEFT library...")
|
18 |
-
subprocess.check_call(["pip", "install", "peft"])
|
19 |
-
import peft
|
20 |
-
|
21 |
# Create permanent storage directory
|
22 |
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
23 |
if not os.path.exists(SAVE_DIR):
|
@@ -25,17 +16,28 @@ if not os.path.exists(SAVE_DIR):
|
|
25 |
|
26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
28 |
-
|
29 |
|
30 |
-
# Initialize pipeline
|
31 |
print("Loading pipeline...")
|
32 |
-
# Use
|
33 |
-
pipeline =
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
37 |
pipeline = pipeline.to(device)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
MAX_SEED = np.iinfo(np.int32).max
|
40 |
MAX_IMAGE_SIZE = 1024
|
41 |
|
@@ -56,28 +58,6 @@ def save_generated_image(image, prompt):
|
|
56 |
|
57 |
return filepath
|
58 |
|
59 |
-
def load_generated_images():
|
60 |
-
if not os.path.exists(SAVE_DIR):
|
61 |
-
return []
|
62 |
-
|
63 |
-
# Load all images from the directory
|
64 |
-
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
|
65 |
-
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
|
66 |
-
# Sort by creation time (newest first)
|
67 |
-
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
68 |
-
return image_files
|
69 |
-
|
70 |
-
def load_predefined_images():
|
71 |
-
predefined_images = [
|
72 |
-
"assets/r1.webp",
|
73 |
-
"assets/r2.webp",
|
74 |
-
"assets/r3.webp",
|
75 |
-
"assets/r4.webp",
|
76 |
-
"assets/r5.webp",
|
77 |
-
"assets/r6.webp",
|
78 |
-
]
|
79 |
-
return predefined_images
|
80 |
-
|
81 |
# Function to ensure "nsfw" and "[trigger]" are in the prompt
|
82 |
def process_prompt(prompt):
|
83 |
# Add "nsfw" prefix if not already present
|
@@ -112,21 +92,31 @@ def inference(
|
|
112 |
seed = random.randint(0, MAX_SEED)
|
113 |
generator = torch.Generator(device=device).manual_seed(seed)
|
114 |
|
115 |
-
# Use joint_attention_kwargs to control LoRA scale
|
116 |
-
# (FluxPipeline may use a different parameter name but attempt both)
|
117 |
try:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
except Exception as e:
|
128 |
-
|
129 |
-
|
130 |
image = pipeline(
|
131 |
prompt=processed_prompt,
|
132 |
guidance_scale=guidance_scale,
|
@@ -134,17 +124,17 @@ def inference(
|
|
134 |
width=width,
|
135 |
height=height,
|
136 |
generator=generator,
|
137 |
-
cross_attention_kwargs={"scale": lora_scale},
|
138 |
).images[0]
|
139 |
|
140 |
# Save the generated image
|
141 |
filepath = save_generated_image(image, processed_prompt)
|
142 |
|
143 |
-
# Return the image, seed, and
|
144 |
-
return image, seed, processed_prompt
|
145 |
-
|
146 |
-
examples = "A young couple, their bodies glistening with sweat, make love in the rain, the woman"
|
147 |
|
|
|
|
|
|
|
148 |
|
149 |
# Brighter custom CSS with vibrant colors
|
150 |
custom_css = """
|
@@ -187,125 +177,80 @@ button:hover {
|
|
187 |
transform: translateY(-2px);
|
188 |
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
189 |
}
|
190 |
-
.tabs {
|
191 |
-
margin-top: 20px;
|
192 |
-
}
|
193 |
-
.gallery {
|
194 |
-
background-color: rgba(255, 255, 255, 0.5);
|
195 |
-
border-radius: 10px;
|
196 |
-
padding: 10px;
|
197 |
-
}
|
198 |
"""
|
199 |
|
200 |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
201 |
gr.HTML('<div class="title">NSFW Detection STUDIO</div>')
|
202 |
|
203 |
-
#
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
container=False,
|
215 |
-
)
|
216 |
-
run_button = gr.Button("Generate", variant="primary", scale=0)
|
217 |
-
|
218 |
-
result = gr.Image(label="Result", show_label=False)
|
219 |
-
processed_prompt_display = gr.Textbox(label="Processed Prompt", show_label=True)
|
220 |
-
|
221 |
-
with gr.Accordion("Advanced Settings", open=False):
|
222 |
-
seed = gr.Slider(
|
223 |
-
label="Seed",
|
224 |
-
minimum=0,
|
225 |
-
maximum=MAX_SEED,
|
226 |
-
step=1,
|
227 |
-
value=42,
|
228 |
-
)
|
229 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
230 |
-
|
231 |
-
with gr.Row():
|
232 |
-
width = gr.Slider(
|
233 |
-
label="Width",
|
234 |
-
minimum=256,
|
235 |
-
maximum=MAX_IMAGE_SIZE,
|
236 |
-
step=32,
|
237 |
-
value=1024,
|
238 |
-
)
|
239 |
-
height = gr.Slider(
|
240 |
-
label="Height",
|
241 |
-
minimum=256,
|
242 |
-
maximum=MAX_IMAGE_SIZE,
|
243 |
-
step=32,
|
244 |
-
value=768,
|
245 |
-
)
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
label="Guidance scale",
|
250 |
-
minimum=0.0,
|
251 |
-
maximum=10.0,
|
252 |
-
step=0.1,
|
253 |
-
value=3.5,
|
254 |
-
)
|
255 |
-
num_inference_steps = gr.Slider(
|
256 |
-
label="Number of inference steps",
|
257 |
-
minimum=1,
|
258 |
-
maximum=50,
|
259 |
-
step=1,
|
260 |
-
value=30,
|
261 |
-
)
|
262 |
-
lora_scale = gr.Slider(
|
263 |
-
label="LoRA scale",
|
264 |
-
minimum=0.0,
|
265 |
-
maximum=1.0,
|
266 |
-
step=0.1,
|
267 |
-
value=1.0,
|
268 |
-
)
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
gallery_header = gr.Markdown("### Your Generated Images")
|
278 |
-
generated_gallery = gr.Gallery(
|
279 |
-
label="Generated Images",
|
280 |
-
columns=3,
|
281 |
-
show_label=False,
|
282 |
-
value=load_generated_images(),
|
283 |
-
elem_id="generated_gallery",
|
284 |
-
elem_classes="gallery",
|
285 |
-
height="auto"
|
286 |
)
|
287 |
-
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
|
310 |
gr.on(
|
311 |
triggers=[run_button.click, prompt.submit],
|
@@ -320,7 +265,7 @@ with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
320 |
num_inference_steps,
|
321 |
lora_scale,
|
322 |
],
|
323 |
-
outputs=[result, seed, processed_prompt_display
|
324 |
)
|
325 |
|
326 |
demo.queue()
|
|
|
6 |
import numpy as np
|
7 |
import spaces
|
8 |
import torch
|
9 |
+
from diffusers import AutoPipelineForText2Image
|
10 |
from PIL import Image
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Create permanent storage directory
|
13 |
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
14 |
if not os.path.exists(SAVE_DIR):
|
|
|
16 |
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
19 |
+
lora_id = "seawolf2357/nsfw-detection" # LoRA model
|
20 |
|
|
|
21 |
print("Loading pipeline...")
|
22 |
+
# Use AutoPipelineForText2Image which has better compatibility with LoRA loading
|
23 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
24 |
+
repo_id,
|
25 |
+
torch_dtype=torch.bfloat16,
|
26 |
+
use_safetensors=True
|
27 |
+
)
|
28 |
pipeline = pipeline.to(device)
|
29 |
|
30 |
+
# Try to load the LoRA with direct method (simpler approach)
|
31 |
+
print("Loading LoRA weights...")
|
32 |
+
try:
|
33 |
+
pipeline.load_lora_weights(lora_id)
|
34 |
+
print("LoRA weights loaded successfully!")
|
35 |
+
lora_loaded = True
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Could not load LoRA weights using standard method: {e}")
|
38 |
+
print("Continuing without LoRA functionality.")
|
39 |
+
lora_loaded = False
|
40 |
+
|
41 |
MAX_SEED = np.iinfo(np.int32).max
|
42 |
MAX_IMAGE_SIZE = 1024
|
43 |
|
|
|
58 |
|
59 |
return filepath
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# Function to ensure "nsfw" and "[trigger]" are in the prompt
|
62 |
def process_prompt(prompt):
|
63 |
# Add "nsfw" prefix if not already present
|
|
|
92 |
seed = random.randint(0, MAX_SEED)
|
93 |
generator = torch.Generator(device=device).manual_seed(seed)
|
94 |
|
|
|
|
|
95 |
try:
|
96 |
+
# Try with cross_attention_kwargs if LoRA was loaded successfully
|
97 |
+
if lora_loaded:
|
98 |
+
image = pipeline(
|
99 |
+
prompt=processed_prompt,
|
100 |
+
guidance_scale=guidance_scale,
|
101 |
+
num_inference_steps=num_inference_steps,
|
102 |
+
width=width,
|
103 |
+
height=height,
|
104 |
+
generator=generator,
|
105 |
+
cross_attention_kwargs={"scale": lora_scale}
|
106 |
+
).images[0]
|
107 |
+
else:
|
108 |
+
# Fall back to standard generation if LoRA wasn't loaded
|
109 |
+
image = pipeline(
|
110 |
+
prompt=processed_prompt,
|
111 |
+
guidance_scale=guidance_scale,
|
112 |
+
num_inference_steps=num_inference_steps,
|
113 |
+
width=width,
|
114 |
+
height=height,
|
115 |
+
generator=generator,
|
116 |
+
).images[0]
|
117 |
except Exception as e:
|
118 |
+
print(f"Error during inference with cross_attention_kwargs: {e}")
|
119 |
+
# Fall back to standard generation without LoRA parameters
|
120 |
image = pipeline(
|
121 |
prompt=processed_prompt,
|
122 |
guidance_scale=guidance_scale,
|
|
|
124 |
width=width,
|
125 |
height=height,
|
126 |
generator=generator,
|
|
|
127 |
).images[0]
|
128 |
|
129 |
# Save the generated image
|
130 |
filepath = save_generated_image(image, processed_prompt)
|
131 |
|
132 |
+
# Return the image, seed, and processed prompt
|
133 |
+
return image, seed, processed_prompt
|
|
|
|
|
134 |
|
135 |
+
examples = [
|
136 |
+
"A young couple, their bodies glistening with sweat, make love in the rain, the woman"
|
137 |
+
]
|
138 |
|
139 |
# Brighter custom CSS with vibrant colors
|
140 |
custom_css = """
|
|
|
177 |
transform: translateY(-2px);
|
178 |
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
179 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
"""
|
181 |
|
182 |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
183 |
gr.HTML('<div class="title">NSFW Detection STUDIO</div>')
|
184 |
|
185 |
+
# Main generation interface
|
186 |
+
with gr.Column(elem_id="col-container"):
|
187 |
+
with gr.Row():
|
188 |
+
prompt = gr.Text(
|
189 |
+
label="Prompt",
|
190 |
+
show_label=False,
|
191 |
+
max_lines=1,
|
192 |
+
placeholder="Enter your prompt (nsfw and [trigger] will be added automatically)",
|
193 |
+
container=False,
|
194 |
+
)
|
195 |
+
run_button = gr.Button("Generate", variant="primary", scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
result = gr.Image(label="Result", show_label=False)
|
198 |
+
processed_prompt_display = gr.Textbox(label="Processed Prompt", show_label=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
+
with gr.Accordion("Advanced Settings", open=False):
|
201 |
+
seed = gr.Slider(
|
202 |
+
label="Seed",
|
203 |
+
minimum=0,
|
204 |
+
maximum=MAX_SEED,
|
205 |
+
step=1,
|
206 |
+
value=42,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
)
|
208 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
209 |
|
210 |
+
with gr.Row():
|
211 |
+
width = gr.Slider(
|
212 |
+
label="Width",
|
213 |
+
minimum=256,
|
214 |
+
maximum=MAX_IMAGE_SIZE,
|
215 |
+
step=32,
|
216 |
+
value=1024,
|
217 |
+
)
|
218 |
+
height = gr.Slider(
|
219 |
+
label="Height",
|
220 |
+
minimum=256,
|
221 |
+
maximum=MAX_IMAGE_SIZE,
|
222 |
+
step=32,
|
223 |
+
value=768,
|
224 |
+
)
|
225 |
|
226 |
+
with gr.Row():
|
227 |
+
guidance_scale = gr.Slider(
|
228 |
+
label="Guidance scale",
|
229 |
+
minimum=0.0,
|
230 |
+
maximum=10.0,
|
231 |
+
step=0.1,
|
232 |
+
value=3.5,
|
233 |
+
)
|
234 |
+
num_inference_steps = gr.Slider(
|
235 |
+
label="Number of inference steps",
|
236 |
+
minimum=1,
|
237 |
+
maximum=50,
|
238 |
+
step=1,
|
239 |
+
value=30,
|
240 |
+
)
|
241 |
+
lora_scale = gr.Slider(
|
242 |
+
label="LoRA scale",
|
243 |
+
minimum=0.0,
|
244 |
+
maximum=1.0,
|
245 |
+
step=0.1,
|
246 |
+
value=1.0,
|
247 |
+
)
|
248 |
|
249 |
+
gr.Examples(
|
250 |
+
examples=examples,
|
251 |
+
inputs=[prompt],
|
252 |
+
outputs=[result, seed, processed_prompt_display],
|
253 |
+
)
|
254 |
|
255 |
gr.on(
|
256 |
triggers=[run_button.click, prompt.submit],
|
|
|
265 |
num_inference_steps,
|
266 |
lora_scale,
|
267 |
],
|
268 |
+
outputs=[result, seed, processed_prompt_display],
|
269 |
)
|
270 |
|
271 |
demo.queue()
|