Hbin-Zhuang
♻️ refactor3: 基础设施层抽象与依赖注入实现
ea53ae2
"""
外部服务抽象接口
为LLM、Embedding和VectorStore等外部依赖提供抽象层
"""
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Union, Tuple
from dataclasses import dataclass
from enum import Enum
import asyncio
class ModelStatus(Enum):
"""模型状态枚举"""
AVAILABLE = "available"
UNAVAILABLE = "unavailable"
ERROR = "error"
RATE_LIMITED = "rate_limited"
@dataclass
class ModelInfo:
"""模型信息"""
name: str
provider: str
status: ModelStatus
capabilities: List[str]
context_length: Optional[int] = None
cost_per_token: Optional[float] = None
rate_limit: Optional[Dict[str, int]] = None
@dataclass
class ChatMessage:
"""聊天消息"""
role: str # "user", "assistant", "system"
content: str
timestamp: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None
@dataclass
class ChatResponse:
"""聊天响应"""
content: str
model_used: str
tokens_used: Optional[int] = None
finish_reason: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None
@dataclass
class EmbeddingResult:
"""嵌入结果"""
vectors: List[List[float]]
model_used: str
tokens_used: Optional[int] = None
metadata: Optional[Dict[str, Any]] = None
@dataclass
class DocumentChunk:
"""文档块"""
content: str
metadata: Dict[str, Any]
chunk_id: Optional[str] = None
source: Optional[str] = None
@dataclass
class SearchResult:
"""搜索结果"""
document: DocumentChunk
score: float
rank: int
class ILLMService(ABC):
"""大语言模型服务抽象接口"""
@abstractmethod
def get_available_models(self) -> List[ModelInfo]:
"""获取可用模型列表"""
pass
@abstractmethod
def chat(self,
messages: List[ChatMessage],
model: Optional[str] = None,
temperature: float = 0.7,
max_tokens: Optional[int] = None,
**kwargs) -> ChatResponse:
"""聊天对话"""
pass
@abstractmethod
async def chat_async(self,
messages: List[ChatMessage],
model: Optional[str] = None,
temperature: float = 0.7,
max_tokens: Optional[int] = None,
**kwargs) -> ChatResponse:
"""异步聊天对话"""
pass
@abstractmethod
def stream_chat(self,
messages: List[ChatMessage],
model: Optional[str] = None,
temperature: float = 0.7,
max_tokens: Optional[int] = None,
**kwargs):
"""流式聊天对话"""
pass
@abstractmethod
def get_model_status(self, model: str) -> ModelStatus:
"""获取模型状态"""
pass
@abstractmethod
def validate_connection(self) -> bool:
"""验证连接"""
pass
class IEmbeddingService(ABC):
"""嵌入服务抽象接口"""
@abstractmethod
def get_available_models(self) -> List[ModelInfo]:
"""获取可用嵌入模型列表"""
pass
@abstractmethod
def embed_texts(self,
texts: List[str],
model: Optional[str] = None,
**kwargs) -> EmbeddingResult:
"""文本嵌入"""
pass
@abstractmethod
async def embed_texts_async(self,
texts: List[str],
model: Optional[str] = None,
**kwargs) -> EmbeddingResult:
"""异步文本嵌入"""
pass
@abstractmethod
def embed_query(self,
query: str,
model: Optional[str] = None,
**kwargs) -> List[float]:
"""查询嵌入"""
pass
@abstractmethod
def get_embedding_dimension(self, model: Optional[str] = None) -> int:
"""获取嵌入维度"""
pass
@abstractmethod
def validate_connection(self) -> bool:
"""验证连接"""
pass
class IVectorStoreService(ABC):
"""向量存储服务抽象接口"""
@abstractmethod
def create_collection(self,
name: str,
dimension: int,
metadata: Optional[Dict[str, Any]] = None) -> bool:
"""创建集合"""
pass
@abstractmethod
def delete_collection(self, name: str) -> bool:
"""删除集合"""
pass
@abstractmethod
def list_collections(self) -> List[str]:
"""列出所有集合"""
pass
@abstractmethod
def add_documents(self,
collection_name: str,
documents: List[DocumentChunk],
embeddings: List[List[float]],
**kwargs) -> bool:
"""添加文档"""
pass
@abstractmethod
def search(self,
collection_name: str,
query_embedding: List[float],
top_k: int = 5,
filter_conditions: Optional[Dict[str, Any]] = None,
**kwargs) -> List[SearchResult]:
"""相似性搜索"""
pass
@abstractmethod
def delete_documents(self,
collection_name: str,
document_ids: List[str]) -> bool:
"""删除文档"""
pass
@abstractmethod
def get_collection_stats(self, collection_name: str) -> Dict[str, Any]:
"""获取集合统计信息"""
pass
@abstractmethod
def validate_connection(self) -> bool:
"""验证连接"""
pass
class IDocumentProcessorService(ABC):
"""文档处理服务抽象接口"""
@abstractmethod
def process_file(self,
file_path: str,
chunk_size: int = 1000,
chunk_overlap: int = 200,
**kwargs) -> List[DocumentChunk]:
"""处理文件并分块"""
pass
@abstractmethod
def extract_text(self, file_path: str, **kwargs) -> str:
"""提取文本内容"""
pass
@abstractmethod
def get_supported_formats(self) -> List[str]:
"""获取支持的文件格式"""
pass
@abstractmethod
def validate_file(self, file_path: str) -> Tuple[bool, Optional[str]]:
"""验证文件格式和大小"""
pass
class IMemoryService(ABC):
"""内存服务抽象接口"""
@abstractmethod
def save_conversation(self,
conversation_id: str,
messages: List[ChatMessage]) -> bool:
"""保存对话"""
pass
@abstractmethod
def load_conversation(self, conversation_id: str) -> List[ChatMessage]:
"""加载对话"""
pass
@abstractmethod
def delete_conversation(self, conversation_id: str) -> bool:
"""删除对话"""
pass
@abstractmethod
def list_conversations(self) -> List[Dict[str, Any]]:
"""列出所有对话"""
pass
@abstractmethod
def cleanup_old_conversations(self, days: int = 30) -> int:
"""清理旧对话"""
pass
class IRateLimiterService(ABC):
"""限流服务抽象接口"""
@abstractmethod
def check_rate_limit(self,
key: str,
limit: int,
window_seconds: int) -> Tuple[bool, int]:
"""检查限流状态
Returns:
Tuple[bool, int]: (是否允许请求, 剩余配额)
"""
pass
@abstractmethod
def reset_rate_limit(self, key: str) -> bool:
"""重置限流"""
pass
@abstractmethod
def get_rate_limit_info(self, key: str) -> Dict[str, Any]:
"""获取限流信息"""
pass
class IHealthCheckService(ABC):
"""健康检查服务抽象接口"""
@abstractmethod
def check_service_health(self, service_name: str) -> Dict[str, Any]:
"""检查单个服务健康状态"""
pass
@abstractmethod
def check_all_services_health(self) -> Dict[str, Dict[str, Any]]:
"""检查所有服务健康状态"""
pass
@abstractmethod
def register_health_check(self,
service_name: str,
check_function: callable) -> bool:
"""注册健康检查"""
pass
class IMetricsService(ABC):
"""指标服务抽象接口"""
@abstractmethod
def record_metric(self,
name: str,
value: float,
tags: Optional[Dict[str, str]] = None) -> None:
"""记录指标"""
pass
@abstractmethod
def increment_counter(self,
name: str,
tags: Optional[Dict[str, str]] = None) -> None:
"""递增计数器"""
pass
@abstractmethod
def record_histogram(self,
name: str,
value: float,
tags: Optional[Dict[str, str]] = None) -> None:
"""记录直方图"""
pass
@abstractmethod
def get_metrics(self,
name_pattern: Optional[str] = None) -> Dict[str, Any]:
"""获取指标数据"""
pass
# 异常类
class ExternalServiceException(Exception):
"""外部服务异常基类"""
pass
class LLMServiceException(ExternalServiceException):
"""LLM服务异常"""
pass
class EmbeddingServiceException(ExternalServiceException):
"""嵌入服务异常"""
pass
class VectorStoreException(ExternalServiceException):
"""向量存储异常"""
pass
class RateLimitException(ExternalServiceException):
"""限流异常"""
pass
class HealthCheckException(ExternalServiceException):
"""健康检查异常"""
pass