Latent_Diffusion / demo.py
HawkeyeHS's picture
Added files for stable diffusion
00454cb
import model_loader
import pipeline
from PIL import Image
from transformers import CLIPTokenizer
import torch
DEVICE = "cpu"
ALLOW_CUDA = True
ALLOW_MPS = False
if torch.cuda.is_available() and ALLOW_CUDA:
DEVICE = "cuda"
elif (torch.has_mps or torch.backends.mps.is_available()) and ALLOW_MPS:
DEVICE = "mps"
print(f"Using device: {DEVICE}")
tokenizer = CLIPTokenizer(r"../data/vocab.json", merges_file="../data/merges.txt")
model_file = "../data/v1-5-pruned-emaonly.ckpt"
models = model_loader.preload_models_from_standard_weights(model_file, DEVICE)
## TEXT TO IMAGE
prompt = "A playful dog running through a field of flowers, bathed in golden sunlight."
uncond_prompt = "" # Also known as negative prompt
do_cfg = True
cfg_scale = 8 # min: 1, max: 14
## SAMPLER
sampler = "ddpm"
num_inference_steps = 50
seed = 42
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=uncond_prompt,
input_image=None, # No input image provided
strength=0.5, # Strength not needed for text-to-image
do_cfg=do_cfg,
cfg_scale=cfg_scale,
sampler_name=sampler,
n_inference_steps=num_inference_steps,
seed=seed,
models=models,
device=DEVICE,
idle_device="cpu", # Idle device still set to CPU
tokenizer=tokenizer,
)
# Save the output image
output_image_path = "output_image.png"
Image.fromarray(output_image).save(output_image_path)
print("Image saved successfully at:", output_image_path)