Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM
|
4 |
import difflib
|
5 |
import requests
|
6 |
import os
|
@@ -8,23 +8,20 @@ import json
|
|
8 |
|
9 |
FIREBASE_URL = os.getenv("FIREBASE_URL")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
response = requests.get(f"{FIREBASE_URL}/model_structures/{model_id}.json")
|
14 |
if response.status_code == 200:
|
15 |
return response.json()
|
16 |
return None
|
17 |
|
18 |
-
|
19 |
-
def save_to_firebase(model_id, structure):
|
20 |
response = requests.put(
|
21 |
-
f"{FIREBASE_URL}/
|
22 |
)
|
23 |
return response.status_code == 200
|
24 |
|
25 |
-
|
26 |
def get_model_structure(model_id) -> list[str]:
|
27 |
-
struct_lines = fetch_from_firebase(model_id)
|
28 |
if struct_lines:
|
29 |
return struct_lines
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -34,17 +31,22 @@ def get_model_structure(model_id) -> list[str]:
|
|
34 |
)
|
35 |
structure = {k: str(v.shape) for k, v in model.state_dict().items()}
|
36 |
struct_lines = [f"{k}: {v}" for k, v in structure.items()]
|
37 |
-
save_to_firebase(model_id, struct_lines)
|
38 |
return struct_lines
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def compare_structures(struct1_lines: list[str], struct2_lines: list[str]):
|
42 |
-
# struct1_lines = [f"{k}: {v}" for k, v in struct1.items()]
|
43 |
-
# struct2_lines = [f"{k}: {v}" for k, v in struct2.items()]
|
44 |
diff = difflib.ndiff(struct1_lines, struct2_lines)
|
45 |
return diff
|
46 |
|
47 |
-
|
48 |
def display_diff(diff):
|
49 |
left_lines = []
|
50 |
right_lines = []
|
@@ -74,7 +76,6 @@ def display_diff(diff):
|
|
74 |
|
75 |
return left_html, right_html, diff_found
|
76 |
|
77 |
-
|
78 |
# Set Streamlit page configuration to wide mode
|
79 |
st.set_page_config(layout="wide")
|
80 |
|
@@ -99,10 +100,7 @@ st.title("Model Structure Comparison Tool")
|
|
99 |
model_id1 = st.text_input("Enter the first HuggingFace Model ID")
|
100 |
model_id2 = st.text_input("Enter the second HuggingFace Model ID")
|
101 |
|
102 |
-
if "
|
103 |
-
st.session_state.compare_button_clicked = False
|
104 |
-
|
105 |
-
if st.session_state.compare_button_clicked:
|
106 |
with st.spinner('Comparing models and loading tokenizers...'):
|
107 |
if model_id1 and model_id2:
|
108 |
struct1 = get_model_structure(model_id1)
|
@@ -127,15 +125,11 @@ if st.session_state.compare_button_clicked:
|
|
127 |
|
128 |
# Tokenizer verification
|
129 |
try:
|
130 |
-
|
131 |
-
|
132 |
-
st.write(f"**{model_id1} Tokenizer Vocab Size**: {
|
133 |
-
st.write(f"**{model_id2} Tokenizer Vocab Size**: {
|
134 |
except Exception as e:
|
135 |
st.error(f"Error loading tokenizers: {e}")
|
136 |
else:
|
137 |
st.error("Please enter both model IDs.")
|
138 |
-
st.session_state.compare_button_clicked = False
|
139 |
-
else:
|
140 |
-
if st.button("Compare Models"):
|
141 |
-
st.session_state.compare_button_clicked = True
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import difflib
|
5 |
import requests
|
6 |
import os
|
|
|
8 |
|
9 |
FIREBASE_URL = os.getenv("FIREBASE_URL")
|
10 |
|
11 |
+
def fetch_from_firebase(model_id, data_type):
|
12 |
+
response = requests.get(f"{FIREBASE_URL}/{data_type}/{model_id}.json")
|
|
|
13 |
if response.status_code == 200:
|
14 |
return response.json()
|
15 |
return None
|
16 |
|
17 |
+
def save_to_firebase(model_id, data, data_type):
|
|
|
18 |
response = requests.put(
|
19 |
+
f"{FIREBASE_URL}/{data_type}/{model_id}.json", data=json.dumps(data)
|
20 |
)
|
21 |
return response.status_code == 200
|
22 |
|
|
|
23 |
def get_model_structure(model_id) -> list[str]:
|
24 |
+
struct_lines = fetch_from_firebase(model_id, "model_structures")
|
25 |
if struct_lines:
|
26 |
return struct_lines
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
31 |
)
|
32 |
structure = {k: str(v.shape) for k, v in model.state_dict().items()}
|
33 |
struct_lines = [f"{k}: {v}" for k, v in structure.items()]
|
34 |
+
save_to_firebase(model_id, struct_lines, "model_structures")
|
35 |
return struct_lines
|
36 |
|
37 |
+
def get_tokenizer_vocab_size(model_id) -> int:
|
38 |
+
vocab_size = fetch_from_firebase(model_id, "tokenizer_vocab_sizes")
|
39 |
+
if vocab_size:
|
40 |
+
return vocab_size
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
+
vocab_size = tokenizer.vocab_size
|
43 |
+
save_to_firebase(model_id, vocab_size, "tokenizer_vocab_sizes")
|
44 |
+
return vocab_size
|
45 |
|
46 |
def compare_structures(struct1_lines: list[str], struct2_lines: list[str]):
|
|
|
|
|
47 |
diff = difflib.ndiff(struct1_lines, struct2_lines)
|
48 |
return diff
|
49 |
|
|
|
50 |
def display_diff(diff):
|
51 |
left_lines = []
|
52 |
right_lines = []
|
|
|
76 |
|
77 |
return left_html, right_html, diff_found
|
78 |
|
|
|
79 |
# Set Streamlit page configuration to wide mode
|
80 |
st.set_page_config(layout="wide")
|
81 |
|
|
|
100 |
model_id1 = st.text_input("Enter the first HuggingFace Model ID")
|
101 |
model_id2 = st.text_input("Enter the second HuggingFace Model ID")
|
102 |
|
103 |
+
if st.button("Compare Models"):
|
|
|
|
|
|
|
104 |
with st.spinner('Comparing models and loading tokenizers...'):
|
105 |
if model_id1 and model_id2:
|
106 |
struct1 = get_model_structure(model_id1)
|
|
|
125 |
|
126 |
# Tokenizer verification
|
127 |
try:
|
128 |
+
vocab_size1 = get_tokenizer_vocab_size(model_id1)
|
129 |
+
vocab_size2 = get_tokenizer_vocab_size(model_id2)
|
130 |
+
st.write(f"**{model_id1} Tokenizer Vocab Size**: {vocab_size1}")
|
131 |
+
st.write(f"**{model_id2} Tokenizer Vocab Size**: {vocab_size2}")
|
132 |
except Exception as e:
|
133 |
st.error(f"Error loading tokenizers: {e}")
|
134 |
else:
|
135 |
st.error("Please enter both model IDs.")
|
|
|
|
|
|
|
|