Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -5,12 +5,12 @@ from fastapi.openapi.docs import get_swagger_ui_html
|
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from transformers import pipeline
|
| 8 |
-
import logging, traceback
|
| 9 |
-
from model import summarize_review, smart_summarize
|
| 10 |
from typing import Optional, List
|
| 11 |
|
| 12 |
app = FastAPI(
|
| 13 |
-
title="
|
| 14 |
description="Multilingual GenAI for smarter feedback β summarization, sentiment, emotion, aspects, Q&A and tags.",
|
| 15 |
version="2025.1.0",
|
| 16 |
openapi_url="/openapi.json",
|
|
@@ -35,7 +35,7 @@ async def exception_handler(request: Request, exc: Exception):
|
|
| 35 |
def custom_swagger_ui():
|
| 36 |
return get_swagger_ui_html(
|
| 37 |
openapi_url=app.openapi_url,
|
| 38 |
-
title="
|
| 39 |
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
|
| 40 |
swagger_js_url="https://cdn.jsdelivr.net/npm/swagger-ui-dist@4.18.3/swagger-ui-bundle.js",
|
| 41 |
swagger_css_url="https://cdn.jsdelivr.net/npm/swagger-ui-dist@4.18.3/swagger-ui.css",
|
|
@@ -52,6 +52,7 @@ class ReviewInput(BaseModel):
|
|
| 52 |
aspects: bool = False
|
| 53 |
follow_up: Optional[str] = None
|
| 54 |
product_category: Optional[str] = None
|
|
|
|
| 55 |
intelligence: Optional[bool] = False
|
| 56 |
verbosity: Optional[str] = "detailed"
|
| 57 |
explain: Optional[bool] = False
|
|
@@ -62,40 +63,48 @@ class BulkReviewInput(BaseModel):
|
|
| 62 |
industry: Optional[List[str]] = None
|
| 63 |
aspects: bool = False
|
| 64 |
product_category: Optional[List[str]] = None
|
| 65 |
-
|
| 66 |
|
| 67 |
VALID_API_KEY = "my-secret-key"
|
| 68 |
logging.basicConfig(level=logging.INFO)
|
| 69 |
sentiment_pipeline = pipeline("sentiment-analysis")
|
| 70 |
|
| 71 |
-
def auto_fill(value: Optional[str], default: str = "Generic") -> str:
|
| 72 |
-
if not value or value.strip().lower() == "auto-detect":
|
| 73 |
-
return default
|
| 74 |
-
return value
|
| 75 |
-
|
| 76 |
@app.post("/analyze/")
|
| 77 |
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
| 78 |
if x_api_key != VALID_API_KEY:
|
| 79 |
raise HTTPException(status_code=401, detail="β Unauthorized: Invalid API key")
|
| 80 |
-
|
| 81 |
if len(data.text.split()) < 10:
|
| 82 |
raise HTTPException(status_code=400, detail="β οΈ Review too short for analysis (min. 10 words).")
|
| 83 |
|
| 84 |
try:
|
| 85 |
-
summary
|
| 86 |
if data.verbosity.lower() == "brief":
|
| 87 |
-
summary =
|
|
|
|
|
|
|
| 88 |
|
| 89 |
sentiment = sentiment_pipeline(data.text)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
return {
|
| 92 |
"summary": summary,
|
| 93 |
"sentiment": sentiment,
|
| 94 |
-
"emotion":
|
| 95 |
-
"product_category":
|
| 96 |
-
"
|
|
|
|
|
|
|
| 97 |
}
|
| 98 |
|
| 99 |
-
except Exception:
|
| 100 |
logging.error(f"π₯ Unexpected analysis failure: {traceback.format_exc()}")
|
| 101 |
-
raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
|
|
|
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from transformers import pipeline
|
| 8 |
+
import os, logging, traceback
|
| 9 |
+
from model import summarize_review, smart_summarize, detect_industry, detect_product_category, answer_followup
|
| 10 |
from typing import Optional, List
|
| 11 |
|
| 12 |
app = FastAPI(
|
| 13 |
+
title="\U0001f9e0 NeuroPulse AI",
|
| 14 |
description="Multilingual GenAI for smarter feedback β summarization, sentiment, emotion, aspects, Q&A and tags.",
|
| 15 |
version="2025.1.0",
|
| 16 |
openapi_url="/openapi.json",
|
|
|
|
| 35 |
def custom_swagger_ui():
|
| 36 |
return get_swagger_ui_html(
|
| 37 |
openapi_url=app.openapi_url,
|
| 38 |
+
title="\U0001f9e0 Swagger UI - NeuroPulse AI",
|
| 39 |
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
|
| 40 |
swagger_js_url="https://cdn.jsdelivr.net/npm/swagger-ui-dist@4.18.3/swagger-ui-bundle.js",
|
| 41 |
swagger_css_url="https://cdn.jsdelivr.net/npm/swagger-ui-dist@4.18.3/swagger-ui.css",
|
|
|
|
| 52 |
aspects: bool = False
|
| 53 |
follow_up: Optional[str] = None
|
| 54 |
product_category: Optional[str] = None
|
| 55 |
+
device: Optional[str] = None
|
| 56 |
intelligence: Optional[bool] = False
|
| 57 |
verbosity: Optional[str] = "detailed"
|
| 58 |
explain: Optional[bool] = False
|
|
|
|
| 63 |
industry: Optional[List[str]] = None
|
| 64 |
aspects: bool = False
|
| 65 |
product_category: Optional[List[str]] = None
|
| 66 |
+
device: Optional[List[str]] = None
|
| 67 |
|
| 68 |
VALID_API_KEY = "my-secret-key"
|
| 69 |
logging.basicConfig(level=logging.INFO)
|
| 70 |
sentiment_pipeline = pipeline("sentiment-analysis")
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
@app.post("/analyze/")
|
| 73 |
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
| 74 |
if x_api_key != VALID_API_KEY:
|
| 75 |
raise HTTPException(status_code=401, detail="β Unauthorized: Invalid API key")
|
|
|
|
| 76 |
if len(data.text.split()) < 10:
|
| 77 |
raise HTTPException(status_code=400, detail="β οΈ Review too short for analysis (min. 10 words).")
|
| 78 |
|
| 79 |
try:
|
| 80 |
+
# Smart summary logic based on verbosity and intelligence
|
| 81 |
if data.verbosity.lower() == "brief":
|
| 82 |
+
summary = summarize_review(data.text)
|
| 83 |
+
else:
|
| 84 |
+
summary = smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
|
| 85 |
|
| 86 |
sentiment = sentiment_pipeline(data.text)[0]
|
| 87 |
+
emotion = "joy" # Placeholder
|
| 88 |
+
|
| 89 |
+
# Auto-detection logic
|
| 90 |
+
industry = data.industry if data.industry and data.industry.lower() != "auto-detect" else detect_industry(data.text)
|
| 91 |
+
product_category = data.product_category if data.product_category and data.product_category.lower() != "auto-detect" else detect_product_category(data.text)
|
| 92 |
+
device = "Web"
|
| 93 |
+
|
| 94 |
+
follow_up_response = None
|
| 95 |
+
if data.follow_up:
|
| 96 |
+
follow_up_response = answer_followup(data.text, data.follow_up)
|
| 97 |
|
| 98 |
return {
|
| 99 |
"summary": summary,
|
| 100 |
"sentiment": sentiment,
|
| 101 |
+
"emotion": emotion,
|
| 102 |
+
"product_category": product_category,
|
| 103 |
+
"device": device,
|
| 104 |
+
"industry": industry,
|
| 105 |
+
"follow_up": follow_up_response
|
| 106 |
}
|
| 107 |
|
| 108 |
+
except Exception as e:
|
| 109 |
logging.error(f"π₯ Unexpected analysis failure: {traceback.format_exc()}")
|
| 110 |
+
raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
|