Vestiq / deepfashion2_evaluation.py
Hashii1729's picture
Integrate DeepFashion2 dataset: add evaluation module, utilities, and API endpoints for dataset management and analysis
f8b306b
"""
DeepFashion2 Evaluation Module
Provides evaluation capabilities using DeepFashion2 dataset as benchmark
for the Vestiq fashion analysis system.
"""
import torch
import numpy as np
from typing import Dict, List, Tuple, Optional
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
import json
from tqdm import tqdm
from deepfashion2_utils import (
DeepFashion2Config,
DeepFashion2Dataset,
DeepFashion2CategoryMapper,
create_deepfashion2_dataloader
)
class DeepFashion2Evaluator:
"""Evaluate fashion models using DeepFashion2 dataset"""
def __init__(self, config: DeepFashion2Config, analyzer=None):
"""
Initialize evaluator
Args:
config: DeepFashion2 configuration
analyzer: HuggingFaceFashionAnalyzer instance
"""
self.config = config
self.analyzer = analyzer
self.category_mapper = DeepFashion2CategoryMapper()
self.results = {}
def evaluate_detection_accuracy(self, split: str = 'validation',
max_samples: Optional[int] = None) -> Dict:
"""
Evaluate fashion object detection accuracy on DeepFashion2
Args:
split: Dataset split to evaluate on
max_samples: Maximum number of samples to evaluate (None for all)
Returns:
Dictionary containing evaluation metrics
"""
if not self.analyzer:
raise ValueError("Analyzer not provided")
print(f"Evaluating detection accuracy on {split} split...")
# Load dataset
dataset = DeepFashion2Dataset(
root_dir=self.config.dataset_root,
split=split,
transform=None,
load_annotations=True
)
if max_samples:
dataset.image_files = dataset.image_files[:max_samples]
# Evaluation metrics
true_categories = []
predicted_categories = []
detection_scores = []
for i in tqdm(range(len(dataset)), desc="Evaluating detection"):
try:
item = dataset[i]
image_path = item['image_path']
annotations = item['annotations']
# Get ground truth categories
gt_categories = dataset.get_categories_in_image(annotations)
gt_yainage_categories = [
self.category_mapper.map_to_yainage90(cat)
for cat in gt_categories
]
gt_yainage_categories = list(set(gt_yainage_categories))
if not gt_yainage_categories:
continue
# Get model predictions
with open(image_path, 'rb') as f:
image_bytes = f.read()
detection_results = self.analyzer.detect_fashion_objects(
self.analyzer.process_image_from_bytes(image_bytes)
)
if 'detected_items' in detection_results:
pred_categories = [
item['category'] for item in detection_results['detected_items']
if item['confidence'] > 0.5
]
pred_categories = list(set(pred_categories))
# Calculate detection score (IoU-like for categories)
if pred_categories and gt_yainage_categories:
intersection = set(pred_categories) & set(gt_yainage_categories)
union = set(pred_categories) | set(gt_yainage_categories)
score = len(intersection) / len(union) if union else 0
detection_scores.append(score)
# Store for classification metrics
for gt_cat in gt_yainage_categories:
true_categories.append(gt_cat)
predicted_categories.append(
gt_cat if gt_cat in pred_categories else 'none'
)
except Exception as e:
print(f"Error processing image {i}: {e}")
continue
# Calculate metrics
metrics = self._calculate_classification_metrics(
true_categories, predicted_categories
)
metrics['detection_scores'] = detection_scores
metrics['mean_detection_score'] = np.mean(detection_scores) if detection_scores else 0
metrics['num_samples'] = len(dataset)
self.results['detection_accuracy'] = metrics
return metrics
def evaluate_feature_extraction(self, split: str = 'validation',
max_samples: Optional[int] = None) -> Dict:
"""
Evaluate feature extraction quality using DeepFashion2
Args:
split: Dataset split to evaluate on
max_samples: Maximum number of samples to evaluate
Returns:
Dictionary containing feature evaluation metrics
"""
if not self.analyzer:
raise ValueError("Analyzer not provided")
print(f"Evaluating feature extraction on {split} split...")
dataset = DeepFashion2Dataset(
root_dir=self.config.dataset_root,
split=split,
transform=None,
load_annotations=True
)
if max_samples:
dataset.image_files = dataset.image_files[:max_samples]
features_by_category = {}
feature_dimensions = []
for i in tqdm(range(len(dataset)), desc="Extracting features"):
try:
item = dataset[i]
image_path = item['image_path']
annotations = item['annotations']
# Get ground truth categories
gt_categories = dataset.get_categories_in_image(annotations)
gt_yainage_categories = [
self.category_mapper.map_to_yainage90(cat)
for cat in gt_categories
]
if not gt_yainage_categories:
continue
# Extract features
with open(image_path, 'rb') as f:
image_bytes = f.read()
feature_results = self.analyzer.extract_fashion_features(
self.analyzer.process_image_from_bytes(image_bytes)
)
if 'feature_vector' in feature_results:
features = np.array(feature_results['feature_vector'])
feature_dimensions.append(feature_results['feature_dimension'])
# Group features by category
for category in gt_yainage_categories:
if category not in features_by_category:
features_by_category[category] = []
features_by_category[category].append(features)
except Exception as e:
print(f"Error processing image {i}: {e}")
continue
# Calculate feature quality metrics
metrics = {
'feature_dimension': np.mean(feature_dimensions) if feature_dimensions else 0,
'categories_found': list(features_by_category.keys()),
'samples_per_category': {
cat: len(feats) for cat, feats in features_by_category.items()
}
}
# Calculate intra-category similarity and inter-category distance
if len(features_by_category) > 1:
intra_similarities = []
inter_distances = []
categories = list(features_by_category.keys())
for i, cat1 in enumerate(categories):
cat1_features = np.array(features_by_category[cat1])
# Intra-category similarity
if len(cat1_features) > 1:
similarities = []
for j in range(len(cat1_features)):
for k in range(j+1, len(cat1_features)):
sim = np.dot(cat1_features[j], cat1_features[k])
similarities.append(sim)
intra_similarities.extend(similarities)
# Inter-category distance
for j, cat2 in enumerate(categories[i+1:], i+1):
cat2_features = np.array(features_by_category[cat2])
for feat1 in cat1_features:
for feat2 in cat2_features:
dist = np.linalg.norm(feat1 - feat2)
inter_distances.append(dist)
metrics['mean_intra_similarity'] = np.mean(intra_similarities) if intra_similarities else 0
metrics['mean_inter_distance'] = np.mean(inter_distances) if inter_distances else 0
metrics['feature_separability'] = (
metrics['mean_inter_distance'] - metrics['mean_intra_similarity']
)
self.results['feature_extraction'] = metrics
return metrics
def _calculate_classification_metrics(self, y_true: List[str],
y_pred: List[str]) -> Dict:
"""Calculate classification metrics"""
if not y_true or not y_pred:
return {}
# Get unique labels
labels = list(set(y_true + y_pred))
# Calculate metrics
accuracy = accuracy_score(y_true, y_pred)
precision, recall, f1, support = precision_recall_fscore_support(
y_true, y_pred, labels=labels, average='weighted', zero_division=0
)
# Per-class metrics
precision_per_class, recall_per_class, f1_per_class, support_per_class = \
precision_recall_fscore_support(
y_true, y_pred, labels=labels, average=None, zero_division=0
)
per_class_metrics = {}
for i, label in enumerate(labels):
per_class_metrics[label] = {
'precision': precision_per_class[i],
'recall': recall_per_class[i],
'f1': f1_per_class[i],
'support': support_per_class[i]
}
return {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1': f1,
'per_class_metrics': per_class_metrics,
'confusion_matrix': confusion_matrix(y_true, y_pred, labels=labels).tolist(),
'labels': labels
}
def generate_evaluation_report(self, output_dir: str = "./evaluation_results") -> str:
"""Generate comprehensive evaluation report"""
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
report_file = output_path / "deepfashion2_evaluation_report.json"
# Compile all results
full_report = {
'config': {
'dataset_root': self.config.dataset_root,
'categories': self.config.categories,
'image_size': self.config.image_size
},
'results': self.results,
'summary': self._generate_summary()
}
# Save report
with open(report_file, 'w') as f:
json.dump(full_report, f, indent=2)
print(f"Evaluation report saved to: {report_file}")
return str(report_file)
def _generate_summary(self) -> Dict:
"""Generate evaluation summary"""
summary = {}
if 'detection_accuracy' in self.results:
det_results = self.results['detection_accuracy']
summary['detection'] = {
'accuracy': det_results.get('accuracy', 0),
'f1_score': det_results.get('f1', 0),
'mean_detection_score': det_results.get('mean_detection_score', 0)
}
if 'feature_extraction' in self.results:
feat_results = self.results['feature_extraction']
summary['features'] = {
'feature_dimension': feat_results.get('feature_dimension', 0),
'categories_evaluated': len(feat_results.get('categories_found', [])),
'feature_separability': feat_results.get('feature_separability', 0)
}
return summary
def plot_confusion_matrix(self, output_dir: str = "./evaluation_results"):
"""Plot confusion matrix for detection results"""
if 'detection_accuracy' not in self.results:
print("No detection results available for plotting")
return
results = self.results['detection_accuracy']
if 'confusion_matrix' not in results:
return
cm = np.array(results['confusion_matrix'])
labels = results['labels']
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=labels, yticklabels=labels)
plt.title('Fashion Object Detection Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
plt.savefig(output_path / 'confusion_matrix.png', dpi=300, bbox_inches='tight')
plt.close()
print(f"Confusion matrix saved to: {output_path / 'confusion_matrix.png'}")
def run_full_evaluation(analyzer, config: Optional[DeepFashion2Config] = None,
max_samples: int = 100) -> str:
"""
Run full evaluation pipeline
Args:
analyzer: HuggingFaceFashionAnalyzer instance
config: DeepFashion2 configuration
max_samples: Maximum samples to evaluate
Returns:
Path to evaluation report
"""
if config is None:
config = DeepFashion2Config()
evaluator = DeepFashion2Evaluator(config, analyzer)
print("Starting DeepFashion2 evaluation...")
# Run detection evaluation
try:
evaluator.evaluate_detection_accuracy(max_samples=max_samples)
print("βœ“ Detection evaluation completed")
except Exception as e:
print(f"βœ— Detection evaluation failed: {e}")
# Run feature extraction evaluation
try:
evaluator.evaluate_feature_extraction(max_samples=max_samples)
print("βœ“ Feature extraction evaluation completed")
except Exception as e:
print(f"βœ— Feature extraction evaluation failed: {e}")
# Generate report
report_path = evaluator.generate_evaluation_report()
# Plot confusion matrix
try:
evaluator.plot_confusion_matrix()
print("βœ“ Confusion matrix plotted")
except Exception as e:
print(f"βœ— Confusion matrix plotting failed: {e}")
return report_path