Spaces:
Sleeping
Sleeping
HashamUllah
commited on
Commit
•
7c80fe0
1
Parent(s):
86c90ed
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import json
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
|
10 |
+
# Load the TensorFlow model
|
11 |
+
model = tf.keras.models.load_model('./plant_disease_detection_saved_model')
|
12 |
+
|
13 |
+
# Load categories
|
14 |
+
with open('./categories.json') as f:
|
15 |
+
categories = json.load(f)
|
16 |
+
|
17 |
+
def preprocess_image(image):
|
18 |
+
# Convert the image to a NumPy array
|
19 |
+
image = Image.open(io.BytesIO(image))
|
20 |
+
image = image.resize((224, 224)) # Adjust size as needed
|
21 |
+
image_array = np.array(image) / 255.0 # Normalize to [0, 1]
|
22 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
23 |
+
return image_array
|
24 |
+
|
25 |
+
@app.route('/predict', methods=['POST'])
|
26 |
+
def predict():
|
27 |
+
if 'image' not in request.files:
|
28 |
+
return jsonify({'error': 'No image provided'}), 400
|
29 |
+
|
30 |
+
image = request.files['image'].read()
|
31 |
+
image_array = preprocess_image(image)
|
32 |
+
|
33 |
+
# Make prediction
|
34 |
+
predictions = model.predict(image_array)
|
35 |
+
predicted_class = np.argmax(predictions, axis=1)[0]
|
36 |
+
|
37 |
+
# Map to category names
|
38 |
+
predicted_label = categories.get(str(predicted_class), 'Unknown')
|
39 |
+
|
40 |
+
return jsonify({'class': predicted_label, 'confidence': float(predictions[0][predicted_class])})
|
41 |
+
|
42 |
+
if __name__ == '__main__':
|
43 |
+
app.run(host='0.0.0.0', port=8080, debug=True)
|