IbrahimHasani's picture
Create app.py
472aaf0
raw
history blame
23.3 kB
import cv2
import requests
from PIL import Image
import PIL
from PIL import ImageDraw
from matplotlib import pyplot as plt
import matplotlib
from matplotlib import rcParams
import os
import tempfile
from io import BytesIO
from pathlib import Path
import argparse
import random
import numpy as np
import torch
import matplotlib.cm as cm
import pandas as pd
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from transformers.image_utils import ImageFeatureExtractionMixin
from SuperGluePretrainedNetwork.models.matching import Matching
from SuperGluePretrainedNetwork.models.utils import (compute_pose_error, compute_epipolar_error,
estimate_pose,
error_colormap, AverageTimer, pose_auc, read_image,
rotate_intrinsics, rotate_pose_inplane,
scale_intrinsics)
torch.set_grad_enabled(False)
mixin = ImageFeatureExtractionMixin()
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
# Use GPU if available
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
import requests
from PIL import Image, ImageDraw
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
import torch
import cv2
import tempfile
def detect_and_crop2(target_image_path,
query_image_path,
model,
processor,
mixin,
device,
threshold=0.5,
nms_threshold=0.3,
visualize=True):
# Open target image
image = Image.open(target_image_path).convert('RGB')
image_size = model.config.vision_config.image_size + 5
image = mixin.resize(image, image_size)
target_sizes = torch.Tensor([image.size[::-1]])
# Open query image
query_image = Image.open(query_image_path).convert('RGB')
image_size = model.config.vision_config.image_size + 5
query_image = mixin.resize(query_image, image_size)
# Process input and query image
inputs = processor(images=image, query_images=query_image, return_tensors="pt").to(device)
# Get predictions
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
# Convert predictions to CPU
img = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
outputs.logits = outputs.logits.cpu()
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu()
# Post process the predictions
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
boxes, scores = results[0]["boxes"], results[0]["scores"]
# If no boxes, return an empty list
if len(boxes) == 0 and visualize:
print(f"No boxes detected for image: {target_image_path}")
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
ax.set_title("Original Image")
ax.axis("off")
plt.show()
return []
# Filter boxes
img_with_all_boxes = img.copy()
filtered_boxes = []
filtered_scores = []
img_width, img_height = img.shape[1], img.shape[0]
for box, score in zip(boxes, scores):
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
if x1 < 0 or y1 < 0 or x2 < 0 or y2 < 0:
continue
if (x2 - x1) / img_width >= 0.94 and (y2 - y1) / img_height >= 0.94:
continue
filtered_boxes.append([x1, y1, x2, y2])
filtered_scores.append(score)
# Draw boxes on original image
draw = ImageDraw.Draw(image)
for box in filtered_boxes:
draw.rectangle(box, outline="red",width=3)
cropped_images = []
for box in filtered_boxes:
x1, y1, x2, y2 = box
cropped_img = img[y1:y2, x1:x2]
if cropped_img.size != 0:
cropped_images.append(cropped_img)
if visualize:
# Visualization
if not filtered_boxes:
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
ax.set_title("Original Image")
ax.axis("off")
plt.show()
else:
fig, axs = plt.subplots(1, len(cropped_images) + 2, figsize=(15, 5))
axs[0].imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
axs[0].set_title("Original Image")
axs[0].axis("off")
for i, (box, score) in enumerate(zip(filtered_boxes, filtered_scores)):
x1, y1, x2, y2 = box
cropped_img = img[y1:y2, x1:x2]
font = cv2.FONT_HERSHEY_SIMPLEX
text = f"{score:.2f}"
cv2.putText(cropped_img, text, (5, cropped_img.shape[0]-10), font, 0.5, (255,0,0), 1, cv2.LINE_AA)
axs[i+2].imshow(cv2.cvtColor(cropped_img, cv2.COLOR_BGR2RGB))
axs[i+2].set_title("Score: " + text)
axs[i+2].axis("off")
plt.tight_layout()
plt.show()
return cropped_images, image # return original image with boxes drawn
def save_array_to_temp_image(arr):
# Convert the array to an image
img = Image.fromarray(arr)
# Create a temporary file for the image
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png', dir=tempfile.gettempdir())
temp_file_name = temp_file.name
temp_file.close() # We close it because we're not writing to it directly, PIL will handle the writing
# Save the image to the temp file
img.save(temp_file_name)
return temp_file_name
'''
def process_resize(w: int, h: int, resize_dims: list) -> tuple:
if len(resize_dims) == 1 and resize_dims[0] > -1:
scale = resize_dims[0] / max(h, w)
w_new, h_new = int(round(w * scale)), int(round(h * scale))
return w_new, h_new
return w, h
'''
def plot_image_pair(imgs, dpi=100, size=6, pad=.5):
n = len(imgs)
assert n == 2, 'number of images must be two'
figsize = (size*n, size*3/4) if size is not None else None
_, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap('gray'), vmin=0, vmax=255)
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
plt.tight_layout(pad=pad)
def plot_keypoints(kpts0, kpts1, color='w', ps=2):
ax = plt.gcf().axes
ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)
def plot_matches(kpts0, kpts1, color, lw=1.5, ps=4):
fig = plt.gcf()
ax = fig.axes
fig.canvas.draw()
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(ax[0].transData.transform(kpts0))
fkpts1 = transFigure.transform(ax[1].transData.transform(kpts1))
fig.lines = [matplotlib.lines.Line2D(
(fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]), zorder=1,
transform=fig.transFigure, c=color[i], linewidth=lw)
for i in range(len(kpts0))]
ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1,
color, text, path=None, show_keypoints=False,
fast_viz=False, opencv_display=False,
opencv_title='matches', small_text=[]):
# Set the background color for the plot
plt.figure(facecolor='#eeeeee')
plot_image_pair([image0, image1])
# Elegant points and lines for matches
if show_keypoints:
plot_keypoints(kpts0, kpts1, color='k', ps=4)
plot_keypoints(kpts0, kpts1, color='w', ps=2)
plot_matches(mkpts0, mkpts1, color, lw=1)
fig = plt.gcf()
# Add text
fig.text(
0.01, 0.01, '\n'.join(small_text), transform=fig.axes[0].transAxes,
fontsize=10, va='bottom', ha='left', color='#333333', fontweight='bold', fontname='Helvetica',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', boxstyle="round,pad=0.3"))
fig.text(
0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
fontsize=15, va='top', ha='left', color='#333333', fontweight='bold', fontname='Helvetica',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', boxstyle="round,pad=0.3"))
# Optional: remove axis for a cleaner look
plt.axis('off')
# Convert the figure to an OpenCV image
buf = BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Close the figure to free memory
plt.close(fig)
return img
def create_image_pyramid2(image_path, longest_side, scales=[0.25, 0.5, 1.0]):
original_image = cv2.imread(image_path)
oh, ow, _ = original_image.shape
# Determine the scaling factor based on the longest side
if oh > ow:
output_height = longest_side
output_width = int((ow / oh) * longest_side)
else:
output_width = longest_side
output_height = int((oh / ow) * longest_side)
output_size = (output_width, output_height)
pyramid = []
for scale in scales:
# Resize based on the scale factor
resized = cv2.resize(original_image, None, fx=scale, fy=scale)
rh, rw, _ = resized.shape
if scale < 1.0: # downsampling
# Calculate the amount of padding required
dy_top = max((output_size[1] - rh) // 2, 0)
dy_bottom = output_size[1] - rh - dy_top
dx_left = max((output_size[0] - rw) // 2, 0)
dx_right = output_size[0] - rw - dx_left
# Create padded image
padded = cv2.copyMakeBorder(resized, dy_top, dy_bottom, dx_left, dx_right, cv2.BORDER_CONSTANT, value=[255, 255, 255])
pyramid.append(padded)
elif scale > 1.0: # upsampling
# We need to crop the image to fit the desired output size
dy = (rh - output_size[1]) // 2
dx = (rw - output_size[0]) // 2
cropped = resized[dy:dy+output_size[1], dx:dx+output_size[0]]
pyramid.append(cropped)
else: # scale == 1.0
pyramid.append(resized)
return pyramid
# Example usage
# pyramid = create_image_pyramid('path_to_image.jpg', 800)
def image_matching(query_img, target_img, image_dims=[640*2], scale_factors=[0.33,0.66,1], visualize=True, k_thresh=None, m_thresh=None, write=False):
image1, inp1, scales1 = read_image(target_img, device, [640*2], 0, True)
query_pyramid = create_image_pyramid2(query_img, image_dims[0], scale_factors)
all_valid = []
all_inliers = []
all_return_imgs = []
max_matches_img = None
max_matches = -1
for idx, query_level in enumerate(query_pyramid):
temp_file_path = "temp_level_{}.png".format(idx)
cv2.imwrite(temp_file_path, query_level)
image0, inp0, scales0 = read_image(temp_file_path, device, [640*2], 0, True)
if image0 is None or image1 is None:
print('Problem reading image pair: {} {}'.format(query_img, target_img))
else:
# Matching
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0] for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
matches, conf = pred['matches0'], pred['matching_scores0']
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
#color = cm.jet(mconf)[:len(mkpts0)] # Ensure consistent size
color = cm.jet(mconf.detach().numpy())[:len(mkpts0)]
all_valid.append(np.sum( valid.tolist() ))
# Convert torch tensors to numpy arrays.
mkpts0_np = mkpts0.cpu().numpy()
mkpts1_np = mkpts1.cpu().numpy()
try:
# Use RANSAC to find the homography matrix.
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
except:
H = 0
inliers = 0
print ("Not enough points for homography")
# Convert inliers from shape (N, 1) to shape (N,) and count them.
num_inliers = np.sum(inliers)
all_inliers.append(num_inliers)
# Visualization
text = [
'Engagify Image Matching',
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
'Scaling Factor: {}'.format( scale_factors[idx]),
'Matches: {}'.format(len(mkpts0)),
'Inliers: {}'.format(num_inliers),
]
k_thresh = matching.superpoint.config['keypoint_threshold']
m_thresh = matching.superglue.config['match_threshold']
small_text = [
'Keypoint Threshold: {:.4f}'.format(k_thresh),
'Match Threshold: {:.2f}'.format(m_thresh),
]
visualized_img = None # To store the visualized image
if visualize:
ret_img = unified_matching_plot2(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, 'Test_Level_{}'.format(idx), True, False, True, 'Matches_Level_{}'.format(idx), small_text)
all_return_imgs.append(ret_img)
# Storing image with most matches
#if len(mkpts0) > max_matches:
# max_matches = len(mkpts0)
# max_matches_img = 'Matches_Level_{}'.format(idx)
avg_valid = np.sum(all_valid) / len(scale_factors)
avg_inliers = np.sum(all_inliers) / len(scale_factors)
# Convert the image with the most matches to base64 encoded format
# with open(max_matches_img, "rb") as image_file:
# encoded_string = base64.b64encode(image_file.read()).decode()
return {'valid':all_valid, 'inliers':all_inliers, 'visualized_image':all_return_imgs} #, encoded_string
# Usage:
#results = image_matching('Samples/Poster/poster_event_small_22.jpg', 'Samples/Images/16.jpeg', visualize=True)
#print (results)
def image_matching_no_pyramid(query_img, target_img, visualize=True, write=False):
image1, inp1, scales1 = read_image(target_img, device, [640*2], 0, True)
image0, inp0, scales0 = read_image(query_img, device, [640*2], 0, True)
if image0 is None or image1 is None:
print('Problem reading image pair: {} {}'.format(query_img, target_img))
return None
# Matching
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0] for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
matches, conf = pred['matches0'], pred['matching_scores0']
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
#color = cm.jet(mconf)[:len(mkpts0)] # Ensure consistent size
color = cm.jet(mconf.detach().numpy())[:len(mkpts0)]
valid_count = np.sum(valid.tolist())
# Convert torch tensors to numpy arrays.
mkpts0_np = mkpts0.cpu().numpy()
mkpts1_np = mkpts1.cpu().numpy()
try:
# Use RANSAC to find the homography matrix.
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
except:
H = 0
inliers = 0
print("Not enough points for homography")
# Convert inliers from shape (N, 1) to shape (N,) and count them.
num_inliers = np.sum(inliers)
# Visualization
text = [
'Engagify Image Matching',
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
'Matches: {}'.format(len(mkpts0)),
'Inliers: {}'.format(num_inliers),
]
k_thresh = matching.superpoint.config['keypoint_threshold']
m_thresh = matching.superglue.config['match_threshold']
small_text = [
'Keypoint Threshold: {:.4f}'.format(k_thresh),
'Match Threshold: {:.2f}'.format(m_thresh),
]
visualized_img = None # To store the visualized image
if visualize:
visualized_img = unified_matching_plot2(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, 'Test_Match', True, False, True, 'Matches', small_text)
return {
'valid': [valid_count],
'inliers': [num_inliers],
'visualized_image': [visualized_img]
}
# Usage:
#results = image_matching_no_pyramid('Samples/Poster/poster_event_small_22.jpg', 'Samples/Images/16.jpeg', visualize=True)
# Load the SuperPoint and SuperGlue models.
device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu'
print('Running inference on device \"{}\"'.format(device))
config = {
'superpoint': {
'nms_radius': 4,
'keypoint_threshold': 0.005,
'max_keypoints': 1024
},
'superglue': {
'weights': 'outdoor',
'sinkhorn_iterations': 20,
'match_threshold': 0.2,
}
}
matching = Matching(config).eval().to(device)
from PIL import Image
def stitch_images(images):
"""Stitches a list of images vertically."""
if not images:
# Return a placeholder image if the images list is empty
return Image.new('RGB', (100, 100), color='gray')
max_width = max([img.width for img in images])
total_height = sum(img.height for img in images)
composite = Image.new('RGB', (max_width, total_height))
y_offset = 0
for img in images:
composite.paste(img, (0, y_offset))
y_offset += img.height
return composite
def check_object_in_image3(query_image, target_image, threshold=50, scale_factor=[0.33,0.66,1]):
decision_on = []
# Convert cv2 images to PIL images and add them to a list
images_to_return = []
cropped_images, bbox_image = detect_and_crop2(target_image_path=target_image,
query_image_path=query_image,
model=model,
processor=processor,
mixin=mixin,
device=device,
visualize=False)
temp_files = [save_array_to_temp_image(i) for i in cropped_images]
crop_results = [image_matching_no_pyramid(query_image, i, visualize=True) for i in temp_files]
cropped_visuals = []
cropped_inliers = []
for result in crop_results:
# Add visualized images to the temporary list
for img in result['visualized_image']:
cropped_visuals.append(Image.fromarray(img))
for inliers_ in result['inliers']:
cropped_inliers.append(inliers_)
# Stitch the cropped visuals into one image
images_to_return.append(stitch_images(cropped_visuals))
pyramid_results = image_matching(query_image, target_image, visualize=True, scale_factors=scale_factor)
pyramid_visuals = [Image.fromarray(img) for img in pyramid_results['visualized_image']]
# Stitch the pyramid visuals into one image
images_to_return.append(stitch_images(pyramid_visuals))
# Check inliers and determine if the object is present
print (cropped_inliers)
is_present = any(value > threshold for value in cropped_inliers)
if is_present == True:
decision_on.append('Object Detection')
is_present = any(value > threshold for value in pyramid_results["inliers"])
if is_present == True:
decision_on.append('Pyramid Max Point')
if is_present == False:
decision_on.append("Neither, It Failed All Tests")
# Return results as a dictionary
return {
'is_present': is_present,
'images': images_to_return,
'scale factors': scale_factor,
'object detection inliers': cropped_inliers,
'pyramid_inliers' : pyramid_results["inliers"],
'bbox_image':bbox_image,
'decision_on':decision_on,
}
# Example call:
#result = check_object_in_image3('Samples/Poster/poster_event_small.jpg', 'Samples/Images/True_Image_3423234.jpeg', 50)
# Accessing the results:
#print(result['is_present']) # prints True/False
#print(result['images']) # is a list of 2 stitched images.
import gradio as gr
import cv2
from PIL import Image
def gradio_interface(query_image_path, target_image_path, threshold):
result = check_object_in_image3(query_image_path, target_image_path, threshold)
# Depending on how many images are in the list, you can return them like this:
return result['bbox_image'], result['images'][0], result['object detection inliers'], result['scale factors'], result['pyramid_inliers'], result['images'][1], str(result['is_present']), result['decision_on']
# Define the Gradio interface
interface = gr.Interface(
fn=gradio_interface, # function to be called on button press
inputs=[
gr.components.Image(label="Query Image (Drop the Image you want to detect here)", type="filepath"),
gr.components.Image(label="Target Image (Drop the Image youd like to search here)", type="filepath"),
gr.components.Slider(minimum=0, maximum=200, value=50, step=5, label="Enter the Inlier Threshold"),
],
outputs=[
gr.components.Image(label='Filtered Regions of Interest (Candidates)'),
gr.components.Image(label="Cropped Visuals from Image Guided Object Detection "),
gr.components.Text(label='Inliers detected for Image Guided Object Detection '),
gr.components.Text(label='Scale Factors Used for Pyramid (Results below, In Order)'),
gr.components.Text(label='Inliers detected for Pyramid Search (In Order)'),
gr.components.Image(label="Pyramid Visuals"),
gr.components.Textbox(label="Object Present?"),
gr.components.Textbox(label="Decision Taken Based on?"),
],
theme=gr.themes.Monochrome(),
title="Engajify's Image Specific Image Recognition + Matching Tool",
description="[Author: Ibrahim Hasani] \n "
" This tool leverages Transformer, Deep Learning, and Traditional Computer Vision techniques to determine if a specified object "
"(given by the query image) is present within a target image. \n"
"1. Image-Guided Object Detection where we detect potential regions of interest. (Owl-Vit-Google). \n"
"2. Pyramid Search that looks at various scales of the target image. Results provide "
"visual representations of the matching process and a final verdict on the object's presence.\n"
"3. SuperPoint (MagicLeap) + SuperGlue + Homography to extract inliers, which are thresholded for decision making."
)
interface.launch()